TESES E DISSERTAÇÕES
URI Permanente desta comunidade
Navegar
Navegando TESES E DISSERTAÇÕES por Assunto "[en] Electronic Health Records"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Item Aprendizado de máquina supervisionado para classificação automática de prontuários médicos da Cardiologia(2024-07-10) Silva, Gabriel Constantin da; Cazella, Silvio César; Lucchese, Antônio Fernando; Programa de Pós-Graduação em Tecnologias da Informação e Gestão em SaúdeIntrodução: A gestão dos documentos eletrônicos gerados no atendimento em saúde, como por exemplo, os Prontuários Médicos Eletrônicos (PME), é um desafio devido ao significativo volume de informações relacionadas, como doenças e condições clínicas. Nesse contexto, a classificação automática de textos de PME torna-se viável para processar eficientemente a crescente quantidade desses documentos eletrônicos sem necessitar de intervenção humana. Objetivo: Esta dissertação propõe desenvolver modelos de aprendizado de máquina supervisionado para a classificação automática de textos de prontuários eletrônicos de pacientes atendidos em um hospital de cardiologia. Método: A pesquisa seguiu as seguintes etapas: 1) Coletar amostras de PME do mundo real; 2) Gerar dados sintéticos de PME com uso Inteligência Artificial Generativa 3) Pré-processar as amostras de textos; 4) Treinar os modelos preditivos utilizando os textos reais e sintéticos pré-processados; 5) Criar amostras sintéticas. 6) Avaliar o desempenho dos modelos com base nas métricas de acurácia, precisão, abrangência e F1–Score; 7) Verificar o modelo com melhor desempenho para classificar os PME. Resultados: O modelo obtido através do uso do algoritmo de Regressão Logística e treinado com amostras do mundo real obteve maior valor de acurácia, enquanto o gerado com Support Vector Machine (SVM) obteve maior valor de precisão; Após uso de amostras sintéticas de prontuários criadas com uso de ChatGPT para treinamento, o modelo gerado com uso em Long Short-Term Memory (LSTM) obteve valor de acurácia de 0,88, valor de precisão de 0,97, valor de abrangência de 0,68 e valor de Escore-F1 de 0,80. Conclusões: Em termos de desempenho para classificação automática de PME, o LSTM se sobressaiu sem uso de amostras sintéticas, enquanto o SVM apresentou melhor resultado com elas. As técnicas de aprendizado de máquina supervisionado possibilitam a criação de modelos robustos a partir de conjuntos de textos significativos em volume, podendo após uma validação com médicos cardiologistas serem utilizados como apoio no processo de tomada de decisão.