FEDERAL UNIVERSITY OF HEALTH SCIENCES OF PORTO ALEGRE-UFCSPA
POST-GRADUATE COURSE IN REHABILITATION SCIENCE.

Jaison Daniel Cucarián Hurtado

Stem Cells Transplantation and Aerobic Exercise: A Therapeutic Combination in an Animal Model of Parkinson’s Disease

Porto Alegre
2017
Jaison Daniel Cucarián Hurtado

Stem Cell Transplantation and Aerobic Exercise: A Therapeutical Combination in an Animal Model of Parkinson’s Disease

Dissertation / Thesis submitted to postgraduate program in Rehabilitation Sciences of the Federal University of Health Sciences of Porto Alegre as a requirement for the obtaining the degree of Master.

Supervisor: Dr. Alcyr Alves de Oliveira

Porto Alegre
2017
DEDICATION

There are a number of people that without their support and constant motivation, this project would not have been successfully developed and I have a special feeling of gratitude with them.

To my parents, Sandra Hurtado and Juan David Cucarián owing their permanent reinforcement that I have taken as an example of encouragement and inspiration to me throughout my life.

To my friends, and colleagues that actively promote my determination to find and realize my potential as a researcher. In special to Jenny Berrio and Oscar León, their helpmate words push my tenacity. I am going to appreciate all the moments lived together.

In addition, this dissertation is for each person that directly or indirectly contributed to their developing.

I thank you most sincerely.
ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Alcyra Alves de Oliveira for the opportunity that give to me to develop this project, his patience, motivation and their confidence in my work helped me to carried on this research. Besides my advisor, my sincere thanks also go to Prof. Marcia Wink, Cristiano Rodrigues and Mariana Zancan, their compromise into this project was fundamental to culminate it successfully.

I would also like to acknowledge Prof. Alberto Antonio Rasia, Prof. Pedro Dal Lago and their respective investigation teams for their support, knowledge and for providing their laboratories to developed experimental phases of this study. I am deeply grateful also with Dr. Lucas Tortorelli, their advices; words of encouragement and their support in some phases of the research were transcendental for the progress of my work.

Finally, I have greatly benefited from the contribution of all the people who provided me help in some way to the work described in the present dissertation, particularly to Prof. Ramiro Nunes, Luiza Géa, Joana Fish and Ignez Paiva. They all keep me going and certainly, this study would not have been possible without each of you.
It is so unbelievable how powerful and strong are the experiences we lived when we need to live them.
RESUMO

O tratamento terapêutico ideal para os sintomas motores da doença de Parkinson (PD) ainda não foi desenvolvido, no entanto, o transplante de células tronco surgiu como uma abordagem promissora e revolucionária. Apesar dos resultados positivos de estudos experimentais e de alguns ensaios clínicos permanece insatisfatório, não só para mitigar completamente os distúrbios motores, mas também é insuficiente para contribuir com a recuperação funcional. Portanto, o objetivo deste estudo foi investigar o potencial terapêutico das células tronco mesenquimais humanas derivadas de tecido adiposo (ADhMSCs) em combinação com um programa de exercício físico (PE) em um modelo de DP por 6-hidroxidopamina. Quarenta e um ratos machos Wistar foram divididos em cinco grupos de tratamento (sham, lesão, células, exercício e combinado). hMSCs foram isoladas e transplantadas estereotáxicamente no estriado com uma taxa de administração de 2×10^5 células em 6 μL, além disso, os roedores que compuseram os grupos exercício e combinado foram submetidos a um treinamento progressivo aeróbico em esteira. Subsequentemente, a avaliação neurocomportamental foi desenvolvida pelo Foot-Fault Task. Melhoria significativa na função motora e na posicionamento das extremidades foram relativamente semelhantes em todos os grupos de tratamento. Porém, o exercício e o grupo combinado foram os melhores na recuperação funcional. Em contraste, foi identificada uma deterioração permanente nas funções locomotoras nos ratos que não receberam nenhum tipo de tratamento. A avaliação da imunofluorescência foi conduzida para detectar neurônios positivos à tirosina hidroxilase (TH) na substância nigra pars compacta (SNc). Nesse sentido, a presença de neurônios TH-positivos foi corroborada visualmente nos grupos de tratamento em comparação com a baixa concentração no grupo lesão. Em conjunto, nossos dados sugerem que ADhMSCs e PE são adequadas estratégias de abordagem para proporcionar efeitos terapêuticos na recuperação motora em ratos com DP, não obstante devem ser desenvolvidas mais pesquisas que estudem os efeitos e os mecanismos terapêuticos destas estratégias em combinação, melhorando o entendimento da associação destas no processo da neuro-recuperação deste transtorno degenerativo.

Palavras-chave: Doença de Parkinson; Terapia celular; Células tronco; regeneração; Exercício físico; Neuroplasticidade; Capacidade neurotrófica.
ABSTRACT

The ideal therapeutic treatment for Parkinson's disease (PD) motor symptoms has not been developed yet, nevertheless, the stem cell transplantation had emerged as a promising and revolutionary approach. Despite the positive results of experimental studies and some clinical trials, remains been unsatisfactory not only to mitigate completely the motor disturbances but also is insufficient to contribute in the functional recovery. Therefore, the aim of this study was to investigate the therapeutic potential of adipose-derived human mesenchymal stem cells (ADhMSCs) combined it with physical exercise (PE) in a model animal of PD by 6-hydroxydopamine. Forty one wistar male rats were divided into five groups of treatment (sham, injury, cells, exercise and combined). hMSCs were isolated and transplanted stereotactically into the striatum at a rate of administration of \(2 \times 10^5 \) cells in 6 \(\mu \)L, in addition, the rodents that composed exercise and combined groups were submitted an aerobic progressive treadmill training. Consequently, the neurobehavioral assessment was developed by Foot-Fault Task. Significant improves on motor function and paws placing were relatively similar in all treatment groups. Nonetheless, the exercise and combined groups were better in the functional recovery. In contrast, was identified a permanent deterioration in the locomotor functions in rodents that not received treatment. Immunofluorescence evaluation was conducted to detect tyrosine hydroxylase (TH) antibodies in the substantia nigra pars compacta (SNC). In this sense, the presence of TH-positive neurons was visually corroborated in the treatment groups in comparison low concentration within the lesion group. Taking together, our data suggest that ADhMSCs and PE are good approaches to provide therapeutic effects in the motor recovery in rats with PD, further research in the combined these strategies should be developed, improving the understanding of the mechanisms that could be involved in the neuro recovery of this disorder.

Key words: Parkinson's Disease; Cell-based therapy; human mesenchymal stem cells; regeneration; Physical Exercise; Neuroplasticity; Neurotrophic Capacity.
LIST OF FIGURES

Figures of Review:

Figure 1 Different tissue resource for the treatment of PD 25

Figures of Original Article:

Figure 1 Experimental Timeline 49
Figure 2 Morphological features in vitro differentiation of isolated ADMSCs 56
Figure 3 Flow Cytometry Analysis 57
Figure 4 Rotational Behavior 59
Figure 5 The motor performance was improved in all treatment groups 60
Figure 6 Site-specific decrease in Tyrosine Hydroxylase staining 61
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Rotations in the Foot-fault Task</td>
<td>58</td>
</tr>
<tr>
<td>Table 2</td>
<td>Total Foot-slips</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-OHDA</td>
<td>6-Hydroxydopamine</td>
</tr>
<tr>
<td>ADhMSCs</td>
<td>Adipose-Derived human Mesenchymal Stem Cells</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-Brain Barrier</td>
</tr>
<tr>
<td>BDNF</td>
<td>Brain-Derived Neurotrophic Factor</td>
</tr>
<tr>
<td>bFGF</td>
<td>basic Fibroblast Growth Factor</td>
</tr>
<tr>
<td>BG</td>
<td>Basal Ganglia</td>
</tr>
<tr>
<td>BGTC</td>
<td>BG-ThalamoCortical</td>
</tr>
<tr>
<td>BM-MSC</td>
<td>Bone Marrow-Derived Mesenchymal Stem Cells</td>
</tr>
<tr>
<td>BrdU</td>
<td>Bromodeoxyuridine.</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CPG</td>
<td>Central Patterns Generator</td>
</tr>
<tr>
<td>CRPC</td>
<td>C- Reactive Protein</td>
</tr>
<tr>
<td>CTC</td>
<td>Cerebellar dentate-ThalamoCortical</td>
</tr>
<tr>
<td>DA</td>
<td>Dopamine</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine Tetraacetic Acid</td>
</tr>
<tr>
<td>ESCs</td>
<td>Embryonic Stem Cells</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast Growth Factor</td>
</tr>
<tr>
<td>FOG</td>
<td>Freezing of Gait</td>
</tr>
<tr>
<td>FSG</td>
<td>Festinating Gait</td>
</tr>
<tr>
<td>GDNF</td>
<td>Glial cell line-Derived Neurotrophic Factor</td>
</tr>
<tr>
<td>I.P</td>
<td>Intraperitoneally</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-Gamma</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor 1</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1β</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>iNOS</td>
<td>inducible Nitric Oxide Synthase</td>
</tr>
<tr>
<td>iPSCs</td>
<td>induced Pluripotent Stem Cells</td>
</tr>
<tr>
<td>LB</td>
<td>Lewy bodies</td>
</tr>
</tbody>
</table>
LN Lewy Neuritis

MAS Multiple System Atrophy

MFB Middle Forebrain Bundle

MLR Mesencephalic Locomotor Region

mNSCs murine Neural Stem Cells

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MSC Mesenchymal Stem Cells

NF-κ B Nuclear Factor kappa-light-chain-enhancer of activated B cells

NGF Nerve Growth Factor

NO Nitric Oxide

NPCs Human Neural Progenitor Cells

NSAIDs Nonsteroidal Anti-Inflammatory Drugs

NSCs Human neural stem cells

NT-3 Neurotrophin-3

OS Oxidative Stress

PA Physical Activity

PBS Phosphate-Buffered Saline

PD Parkinson Disease

PE Physical Exercise

PFA Paraformaldehyde

PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

ROS Reactive Oxygen Species

SCs Stem Cells

SDF-1α Stromal Derived Factor-1 alpha

Shh Sonic hedgehog

SMA Supplementary Motor Area

SNc Subtantia Nigra Pars Compacta

TH Tyrosine Hydroxylase

TNF-α Tumor Necrosis Factor Alpha

tPA tissue Plasminogen Activator

VEGF Vascular Endothelial Growth Factor
SUMMARY

INTRODUCTION .. 13

OBJECTIVES .. 15

LITERATURE REVIEW ... 16

 Parkinson's disease: Economic Burden and Etiology Factors ... 17
 Molecular and Cellular Mechanisms of Pathogenesis of PD. ... 18
 Motor and Non-Motor Clinical Features of PD .. 20
 Biological Mechanisms of Action of Stem Cells Therapy in the Repair and Protection of Brain Tissue .. 22
 Stem Cell-based Therapy for Parkinson's disease ... 24
 Physical Exercise as a Protective Factor against Neurodegenerative Conditions. 27
 Neuroprotective Benefits of Physical Exercise in Parkinson Disease .. 29
 Combined Therapy: Stem Cells Transplantation and Physical Exercise for Neurodegenerative Conditions .. 31
 Conclusion ... 32

References .. 33

ORIGINAL ARTICLE ... 44

CONCLUSION .. 73

APPENDIXES .. 75
INTRODUCTION

Individuals who suffer from Parkinson Disease (PD) are severely affected in their quality of life-related with health; this situation is reflected in the increasing levels of physical and cognitive disability as a result of this neurodegenerative condition, becoming a critical scenario that requires effective and adequate therapeutic approaches.

As a result, it is not weird that this pathology is considered as a devastating disorder affecting on annual average between 10-20 subjects per 100,000 inhabitants in the worldwide (Tysnes & Storstein, 2017), being the second most prevalent degenerative disease. As a consequence is to be expected that patients and caregivers may have the need to incur high costs in the healthcare systems, this social reality has been widely reported (Kowal, Dall, Chakrabarti, Storm, & Jain, 2013).

Scientific comprehension and the recent advances in the perception of the mechanisms related to this disorder have recognized the complex of physiopathological processes that are implicated and contribute to the motor and cognitive impairments that overlapping and disturb the functionality, interpersonal interaction and restrict the social participation of patients. In this sense, the etiology hallmarks of this illness that have described include the depletion of dopamine (DA) neurons in the Sustancia Nigra pars compacta (SNc) and the striated nucleus, the aggregation of Lewy neurites and bodies, increases in the level of oxidative stress, mutations in α-synuclein and parkin genes and lastly, but not least, some environmental factors are also implicated in the onset of this condition (Lotharius & Brundin, 2002).

Despite the advances in the understanding of the complex etiology of this disorder and the development of interdisciplinary treatment modalities, the efforts are not sufficient and the majority of these therapeutic approaches focus on the symptoms, being currently a challenge the restraint in the disease progression. Stem cells (SCs) transplant have emerged as a promising and revolutionary method to treat the hallmark symptoms of PD, providing a cellular source to restitute dopaminergic pathways and enhance the neuro-microenvironment. In spite of positive findings from animals studies and some clinical trials in the motion performance due to the reinstatement of circuits and DA levels, and
the improvement in cellular environmental conditions, increasing thus, the rate survival of the remaining dopaminergic neurons, this therapeutic approach is not enough for mitigating absolutely all the symptoms. From this notion, we considered that is possible increase the benefits of the SCs transplant combining it with an effective, economical and proven treatment in patients with PD as is the case of physical exercise (PE). In this sense, was developed a literature review about the pathophysiological mechanisms involved in PD and the evidence from human and animals experimental research in the field of cellular therapies to treat this disorder. In addition were described the effects of PE in the modify of disease progression. In order to corroborate our hypotheses was conducted an experimental study, testing the effect of human derived-adipose tissue mesenchymal stem cells (ADhMSCs) and an aerobic progressive training in modeling rats of PD by 6 hydroxydopamine (6-OHDA). The results of this project were showed and described in an empirical report.
OBJECTIVES

Main Objective:

To determine the potential effectiveness of the synergic combination of human mesenchymal stem cell transplants derived from adipose tissue and the aerobic physical exercise as an adjuvant method in the treatment of locomotor performance in an animal model of PD.

Specific Objectives:

1. Recognize the degree of the dopaminergic lesion through the methylphenidate test and immune-staining techniques.

2. To identify the effectiveness of the Foot-Fault Task in the as a sensible test of motor decline in rats models of PD.

3. To assess the degree of functional recovery among the experimental groups through the rotational behavior in and the motor coordination the in the Foot-Fault Task.
LITERATURE REVIEW

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and the inclusion of Lewy bodies (LB). This condition is typified by the overlap of the motor and non-motor symptoms, being clinically disabling and challenging to treat (Schapira et al., 2014). Currently, research efforts have focused to determine and elucidate the pathophysiological mechanisms involved. Cellular and animals models have revealed impairments on the oxidative stress, dysregulation in the neuroinflammation process and mitochondrial dysfunction [1]. In addition, these advances have contributed to developing novel therapeutic strategies that not only deal with the symptoms but also attempt to improve the state of the diseased neuron-glia networks, decreasing the rate of cellular degeneration, therefore, its progression.

Cell therapy has been a boom in the last decades to replace/repair the degenerated cells and modify positively the cellular microenvironment through multiple cellular mechanisms that mediate the recovery process, including the release of multiple trophic factors, the modulation of cytokines pro or anti-inflammatory and the processing of discard elements. In a similar way, Physical Exercise (PE) is a well-recognized and used as an adjuvant approach that improves physical health and contributes to the enhancing of functional capacity of people with chronic and neurodegenerative diseases (Ang et al., 2010; Lunn et al., 2011). Emerging evidence based on animal studies and some clinical humans trials suggests that these both therapeutic strategies are related with the improve of motor performance, being a relevant resource that could be potentiated in conjunction strengthening, the benefits already obtained from these approaches per se

In general, it has been reported that these approaches promote neurogenesis, have a protective function on the remaining survival neurons and contribute to the restorative effect on dopaminergic neurons [4–6]. Nevertheless, the use of a combined therapy of cellular transplantation and exercise to PD is scarcely studied. Is for that reason that in this review, we provide an update on recent progress and the potential effectiveness in the use of Stem cell (SCs) transplantation and PE for the treat Parkinson disease, based on scientific evidence in clinical trials and animal studies.
Parkinson's disease: Economic Burden and Etiology Factors

PD is a complex neurodegenerative long-hold movement disorder that affects thousands of people, it is characterized by important impairments in the motor control and proprioceptive system. Nowadays, it is well known that non-motor deficits are included in the hallmark symptomatology of this illness, leading to a devastating impact on the functionality and a high rate of disability (Ziemssen and Reichmann, 2007). It is considered the second most prevalent pathology in the worldwide, after Alzheimer disease, affecting often people between 40-50 years, being the masculine gender the more prevalent 2:1. Its social, psychological and health burden are heavy, therefore, generating an important disruption in the productive life and the quality of the normal aging process (Elbaz et al., 2016). The advanced ages are major risk factors, only in industrialized countries, 1% of people 60 years of age or above have this condition. In consequence, not surprising that its incidence is around 8 to 18 per 100,000 person-years based on population prospective studies [5]. In this context, the financial scenery is a relevant issue in the social-health context, due not only for hospitalizations, pharmacologic therapies, outpatient visits, home care and other necessary requirements but also for indirect costs for patients and caregivers associated with loss of productivity, early retirements, personal health costs and copayment treatments (Soundy et al., 2014). Only in the United States, the expenses for this population was approximately $14 billion in 2010. In the same way, the cost that patients and caregivers have to assume is not cheap being estimated to be close to $10,000 per person, an amount that is expected to increase in the following decades (Kowal et al., 2013). This perspective is close to European countries, where was demonstrated a directly proportional relationship between the progression of the pathology and rise of expenses (Lindgren et al., 2005). Unfortunately, in Latin America is unknown with certainty the real economic impact of this disease due to the lack of adequate socio-demographic studies and official reports.

As well as in the majority of neurodegenerative diseases, the etiology in PD is multicausal, involving wide interrelations of factors that have not been fully established. These elements are composed of modifiable characteristics (e.g. environmental exposures and lifestyles) and nonmodifiable factors (genetic elements). However, the real cause is even
unknown. As already mentioned is clear that the process of aging is a relevant factor in the development it; nevertheless, it does not cause it on their own. Some factors have been identified and might have an influence on the onset of this neurological condition including: lower education rates, traumatic brain injury, hypertension and the occupational profile (Elbaz et al., 2016).

Molecular and Cellular Mechanisms of Pathogenesis of PD.

The loss of dopaminergic neurons in the SNc is a relevant factor associated with PD symptomatology, a loss between 70%-80% of this neurons is required before the symptoms begin to be recognizable (Smith, 2008), a fact that indicates that the degeneration process begins many years before the pathological features manifest. However, other mechanisms also contribute to cell death; some include mitochondrial dysfunction, oxidative damage, genetic heterogeneity and metabolic alterations (Reeve et al., 2014) that result in an inadequate system of detoxification and energetic use.

Neuronal inclusions of α-synuclein in the perikarya and cell processes referred as LB (Lewy bodies) and Lewy neurites (LN), respectively, are one of the most common etiological disturbances described in PD. Apparently, the localization of these proteins inclusion are associated with the progress of neurodegeneration evident in this condition. From this perspective, people with mild to moderate clinical symptoms have more presence of LB-LN in lower regions of the brainstem, in contrast, it has been identified greater placement in rostral brain areas in chronic cases. These intraneuronal proteinaceous inclusions are also linked with a multiple system atrophy (MSA) disorder, where an evident progressive impairment of nigrostriatal dopaminergic and cerebellar afferents pathways occur (Abeliovich and Gitler, 2016a; Dickson, 2012; Ferrer and Isidro, 2011). In this sense, both pathological processes contribute to support the prion hypothesis, where the progression of the disease is directly related to the distribution from one brain area to another through the presence of αsyn, as a relevant factor that determinate the severity of the PD (Visanji et al., 2013).

In addition to the presence and deficits in the protein synthesis systems, recent studies also have identified pathological changes on the morphology and performance of
mitochondria in patients with PD. It has been suggested that it would promote the
destruction of dopaminergic neurons, contributing to the onset and progression of this
condition through different mechanisms that are not now well established, but which
clearly take part in the functional deterioration. (Esteves et al., 2008; Keeney et al., 2006;
Moon and Paek, 2015). Based on this causal relation the presence of reactive oxygen
species (ROS), the decrease in the mitochondrial complex I enzyme activity, the ATP
depletion and the caspase 3 activation leading to the augment on oxidative stress (OS)
in the nigral neurons aid to the cell death and clinical progress of symptoms (Niedzielska
et al., 2016).

Another particular process that characterizes PD is the neuroinflammation, determined
by the chronic release of cytokines and pro-inflammatory factors mediated by the
activation of astrocytes and microglia altogether with T cell infiltration, these are the
principal attributes detected in both patients and animals models (Wang et al., 2015) and
would be associated with the depletion in dopaminergic neurons. Pro-inflammatory
mediators, including, tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ) and
interleukin-1β (IL-1β) are highly expressed. In addition, the activation of the phenotype
M1 of microglia is a particular feature detected in many neurodegenerative conditions and
PD is not an exception; authors have related it with the increase in the release of cytotoxic
molecules such as the nitric oxide (NO) and inducible nitric oxide synthase (iNOS), and
the cyclooxygenase-2 (Kones, 2010). That is how this chronic neuroinflammatory process
partakes in the constitution of ROS and free radicals (Qian et al., 2010) promoting the
nerve cell degeneration, dopaminergic toxicity, and cell apoptosis, being an important
target to take into account in the development of effective therapeutic strategies.

Although this neurodegenerative condition is considered a sporadic disorder, is now clear
that the emergence of a proportion of cases (5%-10%) are caused by genetic mutations,
in this context, alterations in genes as PARK2, PARK6, PARK7, and PARK8 have been
associated with this phenotype of parkinsonism, being more frequently studied the
genetic implications in it onset.(Abeliovich and Gitler, 2016b; Kones, 2010). In summarize,
is clear that the etiology of PD is multifactorial, the genetics, environmental factors, and
life styles have a relevant role in the vulnerability of humans to suffer this devastating
disorder. Nonetheless, despite the advances of research in this field, is imperative to go
ahead in the understanding of the interrelation of these etiologic mechanisms. This way, effective methods for treating motor symptoms and to halt the disease progression can be developed.

Motor and Non-Motor Clinical Features of PD

The Parkinsonism is a permanent and progressive syndrome characterized by resting tremor, muscle rigidity, bradykinesia, postural instability and coordination disturbance, being these the cardinal symptoms of this neurological condition. Their onset is often unilateral (asymmetrical) and gradually affect the opposite body hemisphere (Williams and Litvan, 2013).

One of the typical and most confusing clinical signs is the rest tremor. This impairment involves, in acute stages, the distal regions of the upper and lower extremities; while in chronic stages, the proximal joints are compromised and the tremor in action (reemergent tremor) begins to appear. It is established that the severity of tremor is not related to the degree of degeneration of dopaminergic neurons in the SNc; recent studies suggested that this impairment is associated with deficits of other dopaminergic core, the retrorubral nucleus (Helmich et al., 2012), and the cerebellum. The relevance of cerebellum in the modulation of tremor was identified from experimental studies that confirm that cerebellar stimulation could induce modifications in the timing of peripheral tremor, being the cerebellar dentate-thalamocortical (CTC) and BG-thalamocortical (BGTC) the targeting key circuits in the control of tremor amplitude (Helmich et al., 2011; Hirschmann et al., 2013). Thalamus, basal ganglia (BG) and premotor regions are cortical structures that have been implicated with this clinical sign, but is not yet well demonstrated their mechanisms of action and their relevance in the progression of this functional impairment (Duval et al., 2016).

Similarly, a classical disruption evident also in PD patients is the bradykinesia, which consists of a reduction in the development, coordination, speed, and amplitude of corporeal movements. The neuro-mechanisms implicated are not well established and understood; nevertheless, their onset is correlated with an imbalance between the direct and indirect circuits between BG and motor cortices. Regarding this, it has been
demonstrated a superior activation of indirect pathway, leading to decrease in the level of excitation within the Thalamo-cortical networks. As well the hypoactivation of pre-motor, supplementary motor (SMA) and somatosensory areas are associated with the disbalance among dopaminergic circuits, generating aberrant sensorimotor integration, which is reflected in low rates of muscle voluntary contraction and proprioception disturbances (Berardelli et al., 2001; Cano-de-la-Cuerda et al., 2010; Espay et al., 2009).

The rigidity is a secondary and relevant element implicated in the decline of motion (Magrinelli et al., 2016). It is characterized by an increase in the muscle tone and the resistance to passive movement, being the flexor pattern the prevalent in these patients. Abnormalities in peripheral sensory inputs and pathological changes in mechanical components of joints (tendons-muscles) have been established as responsible mechanisms in the increment of discharge of motoneurons. The intensification in neuronal activity contributes to the latency of the stretch reflex and the maintenance of this pathological posture (Delwaide et al., 1991; Magrinelli et al., 2016; Rothwell et al., 1983). In this sense, it is important to emphasize that PD patients also present somatic, sensory, vestibular and visual perception abnormalities, key components that contribute to increase the postural instability and the risk of fall. Likewise, musculoskeletal disturbances including, the decrease in the magnitude of the force, velocity and muscle resistance take part in the postural impairment and lead to gait deficits. In this respect, many mechanisms have been involved in the gait disturbances, including pathological changes in the function of SMA, primary sensory-motor cortex and cerebellum. These pathological adaptations are related to the onset of freezing of gait (FOG) and the festinating gait (FSG), common motor experiences in this type of patients (Balash et al., 2012; Chen et al., 2013). Equally, new evidence point to the main role of the mesencephalic locomotor region (MLR) in the control of gait and balance. This structure, particularly, possesses several reciprocal interconnections with the cerebellum, cortical areas, and BG, that once interrupted cause deficits in the initiation, maintaining and modulation of the gait (Jahn et al., 2008; Magrinelli et al., 2016). Finally, the decline in the connection with motor neurons in the spinal cord (central patterns generator, CPG), DA dysfunction, disruptions in different neurotransmitters, including the noradrenergic, serotoninergic, and cholinergic systems are as well other important protagonists in the
onset of gait disorders (Dietz, 2003; Magrinelli et al., 2016; Takakusaki, 2017). Besides these distinctive motor symptoms, non-motor complaints are also prevalent. Systems participating in the regulation of mood, cognition and memory, sleep–wake cycle control, sensory perception and autonomic balance are also disrupted to different levels (Bonnet et al., 2012; Ziemssen and Reichmann, 2007). The subsequent manifested symptoms overlap with the motor complaints, hampering the effectiveness of pharmacological or therapeutic treatments. In many cases, they are underrecognized and undertreated, being a real challenge in advanced stages of PD.

Biological Mechanisms of Action of Stem Cells Therapy in the Repair and Protection of Brain Tissue

Stem cells (SCs) therapies are a revolutionary and promising therapeutic approach in the clinical and research areas. They have been used for the treatment of numerous pathologies and neurodegenerative conditions are not an exception. The SCs are a type of cell that has self-renewal capacity and can differentiate into multiple lineages of cells; these properties make them an important clinical alternative in the treatment of patients with chronic conditions. Fundamentally, cellular therapies use tissue or cells grafts to treat diseases for two therapeutic objectives: the replacement of cells and the enrichment of the cellular environment (Lunn et al., 2011). Transplanted cells could differentiate, integrate and be part of new neuro-glial functional networks within the host and secrete a diversity of neurotrophic factors that could optimize the environment that supports host neurons aiding to cellular recovery. These features have been deeply studied. In this order of ideas, the presence of growth factors including glial-derived (GDNF), vascular endothelial (VEGF) and brain-derived neurotrophic factors (BDNF) after transplantation have been related to relevant for neuroprotective and restorative functions in the nervous system (Lunn et al., 2011; Suzuki and Svendsen, 2008; Wu et al., 2016). What is more, a decrease of the pathological inflammatory process, restoration of neurotransmission, stimulation of plastic responses in the host have been also linked with a functional re-establishment of afferent-efferent connectivity (Sanberg et al., 2012). Additionally, processes of neovascularization through the production of angiogenic factors (e.g. VEGF) (Lindvall et al., 2004) could boost the endogenous recovery
processes by means of an increase of anti-inflammatory molecules and the reduction of OS levels and apoptosis pathways. Horie et al. reported that after sub-acute transplantation into the ischemic human brain, stem cells secreted VEGF that induced vascular repair and decreased the inflammatory reaction (Horie et al., 2011a). Similarly, an improvement in the blood-brain barrier (BBB) integrity by up-regulating tight-junction protein expression has been reported (Horie et al., 2011b).

One of the most studied components in the regenerative area using SCs include the modulation of anti-inflammatory response, it is characterized by a suppression of the peripheral adaptive immune response, the depletion in brain infiltration of immune cells, and the decreased brain edema (Pluchino et al., 2008). In this sense, cellular transplantation have been demonstrated to reduce the expression of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κ B) in neurodegenerative conditions (Kim et al., 2013).

Is clear that neurodegenerative disorders, as well as other neurological conditions, modify the morphology and performance of neurons and glial cells. SCs can potentially revert this by enhancing neural connectivity, synaptogenesis, remapping processes and augment the expression of markers related to neuroplasticity (Lu et al., 2012). These effects were corroborated in studies in animal models of spinal cord injury where was described that SCs-grafted promoted cellular adaptations that up-regulate axonal outgrowth, rewiring, and sprouting (Lu et al., 2012). Similar effects were found in rats with stroke where an increment in the branching, length, and arborization of dendrites was observed after human neural progenitor cells (NPCs) transplant, that contribute to the functional improvement (Horie et al., 2015).

An additional molecular effect recently identified is the enhancement in the endogenous Sonic hedgehog (Shh) pathway; this glycoprotein participates in many physiological processes, including embryonic development, cellular repair, and brain plasticity. Ding et al. showed that SCs therapy increased synapse reorganization, oligodendrogenesis, and axonal density by up-regulating of this pathway and the endogenous tissue plasminogen activator (tPA) (Ding et al., 2013). In the same line, Ager et al showed morphological adaptations after transplantation of murine neural stem cells (mNSCs) in the hippocampus of mice with neuronal loss. In this case, an increase in the synaptogenesis
in striatum radiatum of the CA1 intrahippocampal region was evidenced that was correlated with enhancement in cognitive function through the release of proteins like synaptophysin and synapsin (markers of synaptic integrity) (Ager et al., 2015).

It is well recognized that adult neurogenesis is a dynamic physiological process that occurs in specific cortical areas, the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone of the lateral ventricle in the striatum. The plastic nature of the brain is attributed to the presence of this cycle. This regular process aids to the formation of functional new neurons that establish connections within the existent circuitry and that is involved in synaptic plasticity and better information processing (Kempermann et al., 2015). In the neurodegenerative conditions, this capacity is disturbed, which allows the degenerative process. Fortunately, cell transplantation therapies have demonstrated increase neurogenesis due to the stimulation of growth factors and the release of chemokines such as Notch receptor ligands, BDNF, NGF and stromal derived factor-1 alpha (SDF-1α) that promote plastic and regenerative responses in the host (Horie et al., 2015; Kim et al., 2013; Lindvall et al., 2004; Nicaise et al., 2015). These elements are essential for stimulate or normalize endogenous neurogenesis, contributing to the ameliorating of symptoms. Nevertheless, there is yet limited understanding of the mechanisms whereby the transplanted cell-induce or contribute to this physiological process.

Lastly, it is important to emphasize that the therapeutic objective of SCs therapy depends on the pathologic process and its effectiveness will be influenced by many factors including host responsiveness, the type and number of transplanted cells and the employed technique.

Stem Cell-based Therapy for Parkinson’s disease.

Promising advances in the use of stem cells to treat neurodegenerative conditions have made this therapeutic approach an attractive alternative for treating symptoms in PD. The major research challenge for developing a therapeutic strategy for this neurological condition consists in establishing an efficient and effective method to slow down, or stop it altogether, the progression of the disease.
In PD, the substitution of dopaminergic cells has been the typical purpose for SCs therapy. Thus far, this approach is apparently attainable. However, in recent years, the additional mechanisms have been also mattering of inquiry. Numerous cells sources have been used for treating PD, including bone marrow-derived mesenchymal stem cells (BM-MSC), adipose-derived mesenchymal stem cells (AdMSCs), human neural stem cells (NSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), being the three last ones the most promising for induction into dopaminergic neurons with similar morphological structure and electrophysiological properties (Fig.1.) (Feng and Gao, 2012; Li, 2012).

Fig.1 Different tissue resource for the treatment of PD. Recent advances have proportioned wide range options for obtaining neural progenitor cells (NPCs) and cellular sources for treatment schemes. (A) Embryonic Stem Cells (ESCs) High capacity of self-renewing and proliferation, provide many different types of cells from the three germ layers. (B) Mesenchymal Stem Cells (MSCs) Multipotent cells with an immunomodulation property to reduce immune responses in the host. Despite this, these cells have limited ability to differentiate into dopaminergic neurons. (C) Neural stem cells (NSCs): Isolation from the fetal brains, blastocyst or induced pluripotent stem cells (iPSCs), are multipotent and would differentiate in the own cells of the nervous system. Low risk of tumor formation. Is difficult their preservation and rate of proliferation for long periods of time. (D) iPSCS. Pluripotent allogeneic cells that are reprogrammed to an undifferentiated state. Are obtained from the own individual minimizing the risk of rejection. This type of cell has some potential to form tumors.
In this light, it is also remarkable that transplanted SCs differentiate into glial cells, being a fundamental factor in the enhancement of the microenvironment and functional recovery in patients and animal models with PD. Commonly animals models of nigrostriatal dysfunction have been induced by 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and their construct, face and predictable validity are widely recognized and demonstrated in research (Mercanti et al., 2012). The use of mesenchymal stem cells (MSCs) transplants in these models have brought about a decrease in the neuronal loss (Glavaski-Joksimovic and Bohn, 2013; Joyce et al., 2010; Kitada and Dezawa, 2012). In addition, the increase of secreted neurotrophic factors including NGF, BDNF, fibroblast growth factor (FGF) and the upregulation of tyrosine hydroxylase (TH) are other potential benefits induced by this type of cells (JIN et al., 2008). These molecular effects are functionally correlated with a reduction in the motor behavioral effects of the dopaminergic lesion and partial restoration of nigrostriatal circuits (Han et al., 2015). Some authors considering that the promotion of endogenous neuronal growth factors, the regulation of neuroinflammatory factors, the decreased of apoptosis and the improvement in cerebral microenvironment identified in animal models are strong evidence that suggests the possibility of finding similar physiological results in humans from this therapeutic approach (Marks et al., 2008; Mittermeyer et al., 2012; Venkataramana et al., 2010). Despite the beneficial implications of this type of cell in the recovery of neurogenerative disorders, a potential disadvantage is that it is easily susceptibility to the underlying pathology environment. For instance, MSCs grafted in rats with Alzheimer disease showed the presence of β-amyloid peptide, contributing thus with the neurodegeneration (Joyce et al., 2010).

NSCs are another important cell type for transplantation, these cells can easily differentiate into neurons and glial cells (astrocytes and oligodendrocytes). In severely impaired primates by MPTP, an improvement in motor performance and an increased expression of growth factors were identified after they were grafted. The authors related this functional recovery to the neuroprotective, angiogenic and neurogenic effects induced by these type of cells (Cattaneo et al., 2014; Gincberg et al., 2012; Nishino et al., 2000; Sanberg, 2007). Some few clinical trials have been conducted and positive results
in motor behavior and histological assessments had been also noticed (Defer et al., 1996; Freed et al., 2001; Lindvall et al., 1994; Piccini et al., 1999). Finally, the use of ESCs and iPS cells have demonstrated a greater functional integration, higher graft-induced production of DA and ultimately, the better improvements in the motor behavior of monkeys and rats as models of this pathology (Fu et al., 2015; Zhang et al., 2016). Despite this, some limitations are evident, in the case of ESCs includes their poor survival rate, the high risk of developing teratoma and ethical dilemmas. On the other hand, iPS have emerged as an excellent and promising alternative to use the own patient cells providing a good option to reprogramming and differentiated it, minimizing thus the graft rejection and the avoiding the complicated immunosuppression procedures (Han et al., 2015).

The compile of findings here reported having demonstrated that the cell replacement therapy is a useful source for treating PD and other neurodegenerative conditions. Notwithstanding, the exact mechanisms through which they could foster beneficial effects remain largely unknown. This area of research is exciting from the clinical and neuroscience prospects; it is clear that there is a long way yet to develop a standard and safe procedure to use this method. Despite this, scientific research has done great progress in developing techniques for isolating, differentiating and grafting SCs. This achievement is visible from the positive results of clinical trials and models animals with neurological impairments that support the feasibility of this therapeutic approach in the treatment of degenerative disorders.

Physical Exercise as a Protective Factor against Neurodegenerative Conditions.

The PE in one of the most prescribed therapies in health and disease. It has positive effects on the physical and cognitive well-being and reduces the relative risk of chronic diseases related to aging. Thus, through it, it is possible to enhance the quality of life of normal aging process and reduce early mortality. Similarly, there is strong evidence supporting the preventive nature of PE in several neurological pathologies, including neurodegenerative conditions (Ang et al., 2010; Voelcker-Rehage and Niemann, 2013).
Enhancements in motor and cognitive functions are common results of physical training, being widely documented the neuro-protective effects involved in functional improvement. Increased cerebral blood flow, activation of cortical areas and improved neuroplasticity are thought to mediate it (Hayes et al., 2013; Voelcker-Rehage et al., 2011). Within the later, increases in the synaptic and dendritic density, angiogenesis, rise in the number of glial processes and hippocampal volume has been described (Gomez-Pinilla and Hillman, 2013a; Voelcker-Rehage and Niemann, 2013).

Studies in rodents identified that after a program of voluntary exercise the capillary density and the number of synapses in the Purkinje cells increased within the cerebellum. Similar vascular outcomes were described within the motor cortex and the hippocampus, where the rate of new neurons (neurogenesis) rose after a physical activity (PA) program (Pereira et al., 2007; Thomas et al., 2012). Research in animals models with neurodegenerative conditions had demonstrated that exercise promotes the neuroplasticity and recovery process by up-regulating the number of new neurons and strengthening of neuronal connections (Svensson et al., 2015; Voss et al., 2013). In the same way, empirical studies in elderly people demonstrate that the exercise and PA also increase the gray matter volume in the prefrontal cortex, the temporal lobe, and the hippocampus (Erickson et al., 2014; Voelcker-Rehage and Niemann, 2013). This structural molding within the brain has been associated with improvements in cognitive processing, movement speed, balance, fine coordination, visuospatial and motor processing. In contrast, few studies have assessed the effects in the volume of white matter. So far, positive changes in its volume in older adults after 6 months of cardiovascular training have been seen. This adaptation, apparently, is related to a better processing speed but not improved cognitive performance (Jacobs et al., 2013).

Neuroprotective and anti-inflammatory factors are induced, including the release of BDNF, VEGF, and IGF-1 that promote the up-regulation of neurogenesis, angiogenesis and contribute to the neurovascular adaptations (Gomez-Pinilla and Hillman, 2013b). Equally, an anti-apoptotic effect, namely, a decline in neuronal death and inhibition of hippocampal apoptosis in some traumatic and inflammatory conditions have been reported (Jee et al., 2012; Jung et al., 2014).
Different modalities of exercise have demonstrated positive effects in health conditions in humans, being the aerobic training the more studied. Improvements in working memory, cognitive flexibility and attention are the principal results obtained from this style of physical conditioning (Baker et al., 2010; Gomez-Pinilla and Hillman, 2013a). Furthermore, aerobic training leads to anti-inflammatory effect due to the release of IL10 (a potent anti-inflammatory factor) and the reduction of pro-inflammatory interleukins such as IL1β, IL6 the TNFα, and the C-reactive protein (CRP) (Aguiar et al., 2011; Petersen and Pedersen, 2005). On the other hand, the resistance training also has shown positive effects related to the increased the release of IGF-1, that promotes neurogenesis in the hippocampus, and the myelination; adaptations that have been related to enhanced memory and less cortical white matter atrophy in older women (Best et al., 2015). Cotman et al reported that this type of training has also neuroprotective effects associated with activation of immunomodulatory mechanisms, the delivery of trophic factors and the regulation of ROS and OS (Cotman et al., 2007). All together these findings are reflected in a improve in selective attention, solving problems, and associative memory after physical conditioning programs based on strength training (Liu-Ambrose et al., 2012; Nagamatsu et al., 2012).

These positive findings are also extrapolated to patients with neurodegenerative diseases. Exercise has been shown to reduce the progression of the Alzheimer disease by aiding in the “cleaning” of the amyloid-beta peptide (Ahlskog et al., 2011). In addition, and similarly to cellular therapy, PA enhances the production of cerebral growth factors that attenuate cholinergic neuronal death and the cognitive decline (Chen et al., 2016). The reduction in OS, the increase in the energy metabolism and the cerebral blood are positive effects of this approach that upgrade the neurogenesis and the micro-environment, being substantial elements that counter the neurodegeneration and are linked with the regular practice of exercise (Chen et al., 2016).

Neuroprotective Benefits of Physical Exercise in Parkinson Disease.

Patients with PD have also been benefited from this therapeutic method. Aerobic exercise has been shown to decrease the progression of the disease and improve postural
stability, balance, gait pattern and muscular coordination (Ahlskog, 2011; Lauzé et al., 2016). Furthermore, growth factors and hormones releasing might play a relevant role in promoting endogenous neurogenesis (Ang et al., 2010). The prevention of cognitive decline, the regulation of mood and the modulation of neuroinflammation process are positive effects related with this therapeutic approach (Cruise et al., 2011; Nocera et al., 2010). Similar effects have been described in models animals; learning and memory were benefited from an increased neurogenesis, neuroplasticity, and substantiated release of neurotrophic factors (e.g. BDNF). This factor has also seen to improve angiogenesis, DA levels and the expression of dopaminergic receptors minimizing the dopaminergic dysfunction (Erickson et al., 2011; Petzinger et al., 2010; Robertson et al., 2016; Speelman et al., 2011; Vučković et al., 2010; Wu et al., 2011). Likewise, it has been detected partial reconstruction of nigro-basal ganglia circuits and a GABAergic modulation that contribute with the recovered of the cortico-subcortical connectivity, corticomotor excitability and therefore the motor performance (Borrione et al., 2014; Fisher et al., 2008; Shin et al., 2017; Yin et al., 2009). Additionally, PE activates endogenous anti-oxidant systems and down-regulated the expression of glutamate receptors implicated in excitotoxicity. This discovery was derived from an experimental study in an animal model of PD, where the intensive exercise restored the glutamate receptor expression, boosting the capture of this neurotransmitter and lowering its extracellular concentration (VanLeeuwen et al., 2009).

Strength training has also brought benefits in gait pattern, coordination, motor learning, muscle resistance and balance in clinical trials (Cheng et al., 2016; Tambosco et al., 2014). Few studies have gone deep into the molecular mechanisms linked to these benefits. Some of them include the release of Insulin-like growth factor-I (IGF-I), that per se promotes VEGF and BDNF secretion, higher vascular density, and improved glucose consumption (Frazzitta et al., 2013; Rojas Vega et al., 2010). Furthermore, resistance training constantly practiced reduces the rate of pro-inflammatory basal cytokines (of IL-6 and TNF-α) (Calle and Fernandez, 2010; de Salles et al., 2010) and increases that of anti-inflammatory cytokine (IL-10) (Schwenkgrub et al., 2013).

The evidence and data here exposed supports the premise that PE, independently of their modality (aerobic or resistance training), is a fundamental tool for promoting
neuroplasticity and neuroprotection, two properties associated with motor and cognitive recovery in animal models and patients with PD.

Combined Therapy: Stem Cells Transplantation and Physical Exercise for Neurodegenerative Conditions.

Despite the wide positive effects reported from these two therapeutic approaches in the treatment of motor symptoms and progress of PD that have been summarized here, based on our knowledge, it does not exist research that have assessed the therapeutic potential in the combined of these strategies in animal models or patients with PD. Similarly, scarce studies have used this conjunction to treat neurodegenerative conditions. In the case of patients with amyotrophic lateral sclerosis, their use demonstrated an improvement in the functional independence and the prolongation in the life expectancy in contrast with physical training per se (A.A et al., 2015). The use of exercise as an adjuvant to the cellular therapy in cases of spinal cord injury in rodents and humans has promotes motor recovery, through the reconstitution of pathways conduction and the stimulation of CPG (Ichim et al., 2010; Tashiro et al., 2016). In addition was identified a better glial scar formation from this combined scheme of treatment, promoting a better reconstruction of synaptic circuits (Nicola et al., 2016). Notwithstanding, in spite of the positive results in some neurological conditions, there are also studies that had not identified a superior functional recovery through the combination of these strategies (Nicola et al., 2016; Wang et al., n.d.). Thus is clear the presence of a gap in the understanding of the interaction of these therapeutic methods and the activation of physiological processes that support neuro-recovery. Parameters such as the type of training, the intensity of exercise and the therapeutical recovery window have been postulated as fundamental and responsible factors that have to be defined to optimize the result for a combinatorial treatment (Fu et al., 2016). Nevertheless, more research must be conducted to supply an answer about the effectiveness of combined therapy in the treatment of neurodegenerative diseases.
Conclusion

SCs transplantation and PE are two therapeutic modalities that have been associated with neuroprotective and restorative properties in health and disease. With proven functional benefits in the motor and cognitive domains, both strategies are promising therapeutic approaches for neurodegenerative conditions such as PD, being both potentially disease-modifiers. What is of great interest is the fact that both strategies share, to a great extent, their so far proven cellular and molecular mechanisms of action. This overlap might open the door for a therapeutic potentiation when both therapies are used in conjunction. However, this has been poorly explored to this day, and therefore remains a fundamental gap that deserves further inquiry. Anyways, from this review, we can say that both therapeutic approaches have demonstrated to be beneficial and mitigate to different degrees the progression of the disease, improving physical and functional capacity in both patients and animals models of PD.
References

ORIGINAL ARTICLE-

Physical Exercise and Human Adipose-Derived Mesenchymal Stem Cells Ameliorate Motor disturbances in a Rat Model of Parkinson’s disease.

Planned submission to Brain Research Bulletin Journal

Authors

Jaison D. Cucarían¹ Jenny P. Berrio¹, Cristiano Rodrigues², Mariana Zancan³, Márcia R. Wink², and Alcyr Alves de Oliveira⁴

Affiliation

¹ Post-Graduate Course of Rehabilitation Science, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil. E-mail addresses: ft.jaisonhurtado@gmail.com; jpaober89@hotmail.com

² Cell Biology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil. E-mail addresses: heinzerodrigues@hotmail.com; mwink@ufcspa.edu.br

³ Post-Graduate Course of Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. E-mail: marianazancan@hotmail.com

⁴ Coordinator of Post-Graduate Course in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil. E-mail: alcyr.oliveirajr@gmail.com

*Corresponding author:

Jaison D Cucarián; Post-Graduate Course of Rehabilitation Science -Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245; Porto Alegre, Rio Grande do Sul. CEP 90.050-170, Brazil, Tel: (51) -981596740. Email: ft.jaisonhurtado@gmail.com

Abbreviations List.

PD: Parkinson Disease; MSC: Mesenchymal Stem Cells; PE: Physical Exercise; SCs: Stem Cells; ADhMSCs: Adipose-Derived human Mesenchymal Stem Cells; 6-OHDA: 6-Hydroxydopamine; TH: Tyrosine Hydroxylase; SNc: Substantia Nigra Pars Compacta; BG: Basal Ganglia; LB: Lewy Bodies; SNC: Substantia Nigra pars compacta; PA: Physical Activity; I.P: Intraperitoneally; MFB: Middle Forebrain Bundle; PBS: Phosphate-
Buffered Saline; **DMEM**: Dulbecco’s Modified Eagle’s Medium; **FBS**: Fetal Bovine Serum; **EDTA**: Ethylenediamine Tetraacetic Acid; **PFA**: Paraformaldehyde; **BSA**: Bovine Serum Albumin; **BDNF**: Brain-Derived Neurotrophic Factor; **NT-3**: Neurotrophin-3; **bFGF**: basic Fibroblast Growth Factor; **GDNF**: Glial cell line-Derived Neurotrophic Factor; **NGF**: Nerve Growth Factor; **VEGF**: Vascular Endothelial Growth Factor; **DA**: Dopamine; **IGF-1**: Insulin-like growth factor 1; **PGC-1α**: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; **MPTP**: 1,2,3,6-tetrahydropyridine. **hMSCs**: human Mesenchymal Stem Cells

Abstract

Parkinson’s disease (PD) is a disabling, devastating and the second most common neurodegenerative condition. This situation may become even worse due to is expected that its prevalence increases in the worldwide in the next few years (Findley, 2007).

For decades, the motor symptoms and the overlapping of cognitive impairments make a challenge the treatment of this condition that despite the advances in the research and medical treatments, their management remains in the symptomatic therapy, being unsatisfactory, expensive and suboptimal. In this sense, is a greatly needed to develop new neurorestorative and neuroprotective therapies aimed to ameliorate motor deficits and contain the progression of this pathology. The growing evidence from experimental studies in animal models of PD and some clinical trials confirm the use of the mesenchymal stem cells (MSCs) transplant and physical exercise (PE), separately, as potent tools to treat degenerative diseases. Being then, the exercise a strong adjuvant alternative that would optimize and strengthen the effects of the cell therapy in the treatment of neurodegenerative conditions. Therefore, this study aimed to elucidate the therapeutic potential role of a combined therapy of adipose-derived human mesenchymal stem cells (ADhMSCs) and an aerobic progressive training program of exercise in the motor performance of the PD rat model induced by 6-Hydroxydopamine (6-OHDA). In this study, 41 male Wistar rats were categorized into five groups: sham, injury (6-OHDA), 6-OHDA+exercise, 6-OHDA+cells, and 6-OHDA+combined. After to assess of the
dopaminergic depletion and its extension in the methylphenidate test in our rats. The cellular resource following isolation and culture was transplanted into the left striatum of Parkinsonian rats with a lesion in the middle forebrain bundle. Two groups also were submitted to a forced run on a treadmill during four weeks (5 days/week, 30 up to 60 min/day, a speed of 16 m/min). As behavioral evaluations, Footfault Task was performed at 8 weeks after inducing the model with a consequent euthanasia for immunohistochemical investigations. All therapeutic strategies exhibited a significant decreasing in the induction of rotations by Foot-Fault Task. Similarly, limbs coordination and the paws placing on the behavioral test were improved compared to the non-treatment sample. The enhancement in locomotor performance was more evident in the 6-OHDA+exercise and 6-OHDA+combined groups. Overall, the results of this study confirm that exercise is a powerful option to improve motor performance and reduce dopaminergic lesion. Additionally, this research encourages the necessity to develop more studies in this field using the exercise as an adjuvant therapeutic approach to optimize the benefits of MSCs transplantation in the treatment of motor symptoms in PD, improving thus, the understanding of the reciprocal interrelationship between these therapeutic approaches and the mechanisms involved in the neuro-recovery of this motor disorder.

Keywords

Parkinson’s Disease; Cell-based therapy; mesenchymal stem cells; regeneration; Physical Exercise; Disease-Modifying Therapies; Neuroplasticity; Neurotrophic Capacity.
1. Introduction

Parkinson Disease (PD) is the second most chronic and progressive neurodegenerative pathology after Alzheimer disease, with an incidence between 5 and 10/100,000 person-year that usually affected more men than women (Elbaz et al., 2016; Pringsheim et al., 2014). It is a common motor movement disorder characterized by an onset unilateral with progressive motor symptoms including bradykinesia, imbalance, rigidity and rest tremor, being factors that disturb functionality and incur in high levels of early disability. Recently has been demonstrated a clinical multisystemic phenotype that involves non-motor symptoms such as depression, apathy, and cognitive impairments that contribute to the severity of symptoms, the disease progress and worsening of the quality of life (Poewe, 2008). In consequence, the clinical management includes a wide range of treatments that reflected in important expenses for patients and caregivers. Only in the United States the population with PD incurred in medical cost around $14 billion of dollars in 2010, this economic burden is projected to grow in the next few years (Kowal et al., 2013).

Deficits in the connection of pathways between basal ganglia (BG), cerebellum and cortical areas, accumulation of α-synuclein in the soma and neuritic processes (Lewy bodies (LB)), decrease in the motor and premotor cortical excitability, mitochondrial dysfunctions and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) are pathophysiological mechanisms that characterize this degenerative disorder (Magrinelli et al., 2016). In this context, the current treatments are focused on the disabling motor symptoms, being unsatisfactory to restrain the progression of this neurological condition.

The stem cells (SCs)-based therapy has been proposed as a promising therapeutic approach to endorsing functional recovery in the nervous tissue damage and prevent the progress of the disease. This attractive strategy of treatment is based on the capacity to re-establish functions in the nervous tissue, through the release of neurotrophic factors that have demonstrated to be useful in the promotion of environmental enrichment and cell regeneration. Additionally, their faculties including the capacity to migrate and integrate neuroglial pre-existing circuits, the cell restitution and the prevention in the output of neurotoxic components that support and have been correlated with
improvement in motor and cognitive performance in animal studies and some clinical trials (Bouchez et al., 2008; Freed et al., 2011; Fu et al., 2015; Moon et al., 2013; Yang et al., 2008).

In this sense, one of the most beneficial and studied therapeutic approach to prevent and reduce motor and cognitive decline associated with degenerative diseases is the physical exercise (PE). Cumulative evidence has indicated its relevant role in the neurorecovery process and the potential benefits obtained from your regular practice, including the increase in the neuronal branching, angiogenesis, release of neurotrophic factors and boosting neurogenesis process. (Ang et al., 2010). Altogether, these benefits are translated into protective action against cerebral damage and a resource that enhance physiological bioactivity, being some of the positive effects of this effective and low-cost strategy (Itoh et al., 2011; Morgan et al., 2015). In this regard, the cells transplant and the use of exercise as a concomitant strategy would bring even better results in motor performance, that their use in an independent way. To confirm this assumption, we studied the effects of a combined treatment using adipose-derived human mesenchymal stem cells (ADhMSCs) and aerobic progressive exercise training in the motor performance in an animal model of Parkinson disease by 6-hydroxydopamine(6-OHDA) assessed by the Foot Fault task. A challenge that has demonstrated a high sensibility in the analysis of locomotor activity in PD rodent models (Silvestrin et al., 2009).

2. Materials and methods

2.1 Animals

Male Wistar rats between 200-250 gr were obtained from Breeding Unit of Federal University of Health Sciences of Porto Alegre (UFCSPA). The animals were housed three per cage with access to food and water ad libitum, with standard laboratory conditions in a 12:12 hr light/dark cycle (lights off at 17:00) and steady temperature (22 ± 2 °C). All experimental procedures were developed in accordance with the Conselho Nacional de Controle de Experimentação Animal (CONCEA) and the local Ethics and Research Committee (UFCSPA, protocol N0176/15) approved this research.
2.2 **Experimental Groups**

Rats were randomly distributed in accordance with the modality of treatment into five groups: sham-operated group (Sham; n=9), unilateral 6-OHDA injury group (Injury; n=8), progressive aerobic exercise group (6-OHDA+Exercise; n=8), hMSCs grafting group (6-OHDA+Cells; n=8) and hMSCs transplant and aerobic exercise (6-OHDA+Combined; n=8).

![Experimental Timeline](image)

Fig. 1. Experimental Timeline. All rodents got through all the phases of this study. Sham received a NaCl lesion/graft within the same stereotaxic coordinates but not was exposed to any treatment. Similarly, the injured group did not take part of any therapeutical intervention. All samples underwent identical behavioral tests at the same time points.

2.3 **Middle Forebrain Bundle Infusion of 6-OHDA**

The animals were anesthetized with Xylazine (10mg/kg) intraperitoneally (I.P) and Isoflurane between 4-5% with oxygen administration into 1-1.5 L/min, to maintaining the level of anesthesia. The concentration of Isoflurane was administered among 2%. To avoid and control pain was injected tramadol I.P in the onset of the surgical procedure. The body temperature was maintained in normothermia (37 °C) using a heating pad. They were positioned in the stereotaxic frame (Kopf Instruments, C.A., USA) and the scalp was partially removed, 12 µg 6-OHDA (Sigma, Aldrich) was used to produce a dopaminergic neuronal loss, it dissolves in a solution of sterile saline (0.9%) containing ascorbic acid (Sigma, Aldrich 0.1%). The injection rate was 1 µL/min using a 10 µL microsyringe (Hamilton 701 N, Sigma, St. Louis, M.O., USA) and an infusion pump (11 Plus Harvard Apparatus, W.A., USA). The cannula was placed during 3 minutes to prevent a reflux in the left middle forebrain bundle (MFB) with coordinates anterior-posterior (AP)
-4.0mm, medial-lateral (ML) 1.3 mm and dorsal-ventral (DV)-7 mm relative from bregma and dura (Torres et al., 2011) according to the rat brain atlas.

Lastly, was used iodopovidone to disinfection the region of surgery and subcutaneously injection of sterile saline to hydrate. Rats received post-operate care until awake. For the sham-operated group, the same surgical procedure was developed and an equivalent saline solution volume was injected. The animals were supervised and allowed to recover for 3 days.

2.4 Methylphenidate-induced Rotational Behavior.

To corroborate the dopaminergic damage, two weeks after surgery procedure, the turning response of animals was assessment through the Methylphenidate Test. Animals were injected with 40 mg/kg of methylphenidate (Novartis, SP., Brazil) I.P in dissolution with sterile saline, immediately; they were positioned in a circular Open Field (diameter 90 cm x 35.5 cm) during 30 min. The number of rotational activity and the direction was recorded, and subsequently analyzed (Ferro et al., 2005). Only, the animals with five or more ipsilateral-injury rotational of 360 degrees per minute were included in this study.

2.5 Isolation and Characterization of ADhMSCs

The ADhMSCs used in this study were obtained from abdominal adipose tissue of a healthy female patient that submitted to the liposuction procedure. Patient accepted donate it to research, through a signed Patients Consentient Term at Santa Casa de Misericórdia de Porto Alegre Hospital (Research Ethics Committee approval n0882968). The tissue derived was washed three times with Phosphate-buffered Saline (PBS) using a separate funnel then, it was placed into a Falcon tube for enzymatic treatment with collagenase solution Type I (3 mg/mL, 250 U/mg) dissolved in Dulbecco’s Modified Eagle’s Medium (DMEM, low glucose) (Sigma, St. Louis, MO., USA). Subsequently, the cells were incubated in a water bath at 37°C for 30 min (vortexed each 10 min). The double volume of DMEM with 10% of fetal bovine serum (FBS) (Cultilab, SP., Brazil) was used to inactive the collagenase solution. Next, cells were centrifuged at 600 x g for 10 min and resuspended in an erythrocyte lysis solution (150 mM NH4Cl, 10 mM NaHCO3 and 1 mM ethylenediamine tetraacetic acid (EDTA)) diluted in ultrapure water 1:1 (v:v)
with simultaneous mechanical shaking and incubated for 10 min at room temperature. After new centrifugation (600 × g, 10 min), cells were resuspended in a known volume of DMEM 10%FBS and counted by trypan blue exclusion. 5.2 x 10^3 cells/cm^2 were seeded in six-well plates and cultured at 37 °C in a humidified incubator with 5% CO2 being covered by 3 mL of culture medium. The replacement of DMEM was developed 48 hours later the appearance of adherent cells and the medium was changed each 4 days. Cultures were passaged using 0.25% trypsin and 0.01%EDTA (Invitrogen, Waltham, MA., USA) when the cells reached semi-confluence.

2.6 In vitro Differentiation of ADMSCs

For adipogenic, chondrogenic and osteogenic differentiations, the cells were seeded at a density of 2.2 x 10^5 cells/cm^2. Differentiation medium (Gibco, Grand Island, N.Y., USA) was added and replaced each 4 days, at least, for four weeks. The differentiation medium was changed every 3 days. Completed this term, cells were washed with PBS and fixed in 4% of paraformaldehyde (PFA) for 30 min at 2-8ºC. Cells were stained with 1% Alcian Blue solution prepared in 0.1 N HCL for 30 minutes, 4% Oil Red O solution in Isopropyl alcohol for 5 minutes and 2% Alizarin Red S in water (Ph: 4.2) for 2-3 minutes for chondrogenic, adipogenic and osteogenic assays, respectively. The pictures generated by a BX-50 Olympus microscope with optical lens (10X/0.30 Ph1-UplanFl), interfaced with a camera Motican 2500 (Olympus, Hamburg, Germany) and compared with the control culture, that cells that received only the standard culture medium (DMEM 10% FBS). Also, the phenotype of ADhMSCs was examined by flow cytometry equipped with 488 nm argon laser (Becton-Dickinson, San Diego, CA, USA) using a CellsQuest software. Specific antibodies for human's proteins CD14, CD34, CD44, CD45 and CD105 (Invitrogen, Waltham, MA., USA) were employed. At least 10.000 events were collected.

2.7 Intra-Striatal ADhMSCs Transplantation.

The protocols used in this study were approved by the Ethics Committee on Animal Use (CEUA) of Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), under the number 176-15, following the resolutions of the CONCEA. The NIH “Guide for the
Care and Use of Laboratory Animals” (NIH publication N 80–23, revised 1996) was followed in all experiments. For transplantation, the ADhMSCs were used between passages 4 and 7. To collect the cells, the culture flasks were washed twice with PBS and trypsinized to remove the cell-plastic adherence. After, an enzyme inactivation with a double volume of DMEM 10% FBS was employed. Cells were centrifuged at 600 x g and the pellet was resuspended in PBS to procedure a counting by a Neubauer chamber. Finally, a known number of cells were centrifuged more on time and resuspended in PBS. The samples were maintained at low temperature (2-8ºC) at least two hours before transplantation.

Stereotaxic (Kopf Instruments, C.A., USA) surgeries of hMSCs grafting were conducted one day after Methylphenidate Test. Under deep anesthesia using a mixed solution containing 90mg/Kg of Ketamine and 10 mg/Kg of Xylazine, animals were injected I.P. Stereotactic coordinates were used to identify the striatum in the left hemisphere (AP: 0.5 mm, ML: +3.2 mm and DV: -4.5 mm). A microsyringe of 10 µL (701 N, Hamilton, Sigma, St. Louis, M.O., USA) was employed to administrate an infusion of 2 x 10^5 cells in 6 µL of PBS with a rate of 1.0 µL/min, totaling 6 min (Schwerk et al., 2015). The Hamilton syringe was left in place for 5 min after grafting to prevent leakage after being withdrawn. The control group received the same volume and equal rate of administration of the vehicle infusion (sterile saline). The incision was disinfected with iodopovidone and animals were supervised until recovery, controlling their weight and monitoring the pain sensation. Additionally, right after surgery, an injection I.P of Tramadol was administrated with doses of 12.5 mg/Kg.

2.8 Progressive Aerobic Treadmill Training

The animals exposed to the exercise training were previously acclimated for 3 days in the treadmill (Projetos AVS, SP., Brazil) with a speed of 9m/min for ten minutes, before any surgical procedures. They were prescribed with a dynamic progressive aerobic exercise with moderate intensity and a speed of 16 m/min four days after hMSCs grafting surgical process. The physical regimen consisted of 30 minutes initially, once by day on the treadmill for five sessions per week. Was added 10 minutes per week up to complete 60 minutes per session, then was maintained this intensity for two weeks. To ensure the exercise training, rats received an electrical shock of
0.5 mA, if they stopped at the base of the equipment. The total period of training was four weeks. The speed and the percentage of incline were not modified throughout the study period (Landers et al., 2014; Nunes et al., 2013).

2.9 Foot-Fault Walking Task

The Footfault task is a functional test that assesses the motor impairments of limbs during locomotor activity, including the motor coordination performance and the accuracy of paw placement (Schaar et al., 2010; Silvestrin et al., 2009). The animals were placed in the center of an elevated metal square opening grid with a measure of (4cm²); the dimension of the equipment was (50cm x 50cm x 50cm). They were free to explore during five minutes, as soon as this time was completed the animal was removed to its specific cage. This test was developed in a room with light and sound reduced. After each rat, 70% ethanol was used to clean the grid.

The slips of each limb and the number of ipsilateral-injury spins were registered by a micro-camera Microsoft® Life Cam VX-800 positioned between 40°-60° degrees below of the equipment. A foot-fault was considered if the paw dropped into the grid or if the paw was properly positioned but during the weight support phase, it slipped into of one orifice of the grid (Baskin et al., 2003; Starkey et al., 2005; Zhang et al., 2002). The videos were recorded and analyzed afterward frame by frame with the aid of an opened video analysis program, Tracker Video Analysis and Modeling Tool (Tracker, version 4.92). The total slips of each limb were obtained and then compared between the groups.

2.10 Histological Analysis

Sixty-three days following the 6-OHDA lesion surgery and upon completion of the motor behavioral assessment, the sacrifice of rats was developed through perfusion procedure. Rats were anesthetized with a solution of xylazine (10 mg/kg) and ketamine (100 mg/kg) injected I.P. Then, were transcardially perfused with 1mL of heparin injected into the left ventricle, followed by freshly prepared 4% PFA (at room temperature) in 0.1 M sodium phosphate buffer (pH 7.4) with a total volume of 350 mL using a peristaltic pump (Control Company,SP., Brazil)(Tao-Cheng et al., 2007; Zancan et al., 2017). Carefully, the brain was removed and placed in PFA for overnight (4°C). Subsequently, brains were transferred to a solution of sucrose 30% during 72 hours for cryoprotection. All samples were cooled with liquid nitrogen and stored at -85°C.
Coronal slides sectioning of the tissue was carried out on a CM3050S Cryostat from Leica Microsystems (Buffalo Grove, IL; USA) at -23°C, with a thickness of 50µm, samples obtained were preserved in a solution of PBS with sucrose at 30% in microtiter plates and stored at -20°C for the previous immunostaining.

Tyrosine hydroxylase immunofluorescence

The free-floating technique was used to stained coronal sections through by immunofluorescence for tyrosine hydroxylase (TH); the procedure was conducted in 24-well culture plates. Tissue sections were initially washed 5x5 min with PBS and then pre-blocked with 1% bovine serum albumin (BSA) and 0.025 of Triton X-100 in 0.1 M PBS for 30 min to enhance permeabilization.

Coronal slides were incubated with a polyclonal primary antibody, mouse anti-tyrosine hydroxylase (1:500; Invitrogen, cat# P21962) with 1% BSA and 0.025 Triton X-100 in 0.1 M PBS at 4°C for 24 hours in a microplate shaker. On the following day, slides were washed in PBS four times for at least 10 min each time and incubated with a secondary antibody (1:400 donkey anti-mouse IgG (Invitrogen, A-21202) Alexa Fluor® 568) and 0.025 Triton X-100 in 0.1 M PBS for an hour and a half in the microplate shaker. All the incubations were done at room temperature unless referred otherwise. In the final step, sections were mounted with Vectashield® (Vector Laboratories, cat# H-1000) mounting medium on glass slides with an overslipped. At least five sections of SN were analysis for TH immunofluorescence for two rats per group. Fluorescence was detected in an Olympus IX51 U-RFLT Inverted Microscope (Olympus Corporation, USA). The 510-550 wavelength laser was used for exciting the TH samples. The Olympus DP controller 3.3.1292 software was used for photographic capture. Two set of photos were taken at 4 x and 20x objectives. All technical parameters were maintained for shooting the different samples.

2.11 Statistical Analyses

All statistics were analyzed using IBM®SPSS® Statistics ver 20.0. All variables were expressed as “mean (SD)”. All data were initially subjected to Shapiro–Wilk test to determine the normal distribution of data. Subsequently, the comparison among the
groups were evaluated statistically using one-way analysis of variance (ANOVA) test. Statistical significance was preset at p< 0.05.

3. Results

3.1 ADMSCs Morphology

The micrograph in Figure 2 showed the morphology of the ADhMSCs during the isolation and culture procedure and fibroblast-like morphology (Fig.2a).

3.2 Feasibility of use and Differentiation Potential of ADMSCs- In vitro.

In addition, was demonstrated after 3 weeks a satisfactory adipogenic differentiation by the presence of lipid vacuoles (Fig.2b). The round constitution and the formation of extracellular matrix corroborated the presence of chondrogenic cells (Fig.2c) and finally, the osteogenic differentiation was determinate owing the appearance of calcium phosphate precipitates (Fig.2d) through Oil Red O staining, Alcian blue stain, and Alizarin Red S staining, respectively. These tests demonstrated the pluripotency capacity of the cells used in the present study. In this sense, to demonstrated the feasibility of our cells was developed a Flow The results of it confirmed the nature of our cells through the lack of expression of CD45, CD14, and CD34 (Fig.3a-c) and positive staining for CD44, and CD105 markers (Fig.3 d-e)
3.3. Rotational Behavioral Analysis in the Methylphenidate Test
The behavioral response seen in the unilaterally 6-OHDA-lesioned rats was the ipsilateral rotational behavior toward the side of the lesion (left side) with methylphenidate in the Open-field. None of the sham animals presented rotations. In our experiment, the analysis of variance showed not significant differences in the quantity of rotational activity between groups, being apparent the same degree of severity in the dopaminergic lesion between each sample \([F(3,28)=0.37, p=0.77]\).
3.4 Reduction in Rotational Activity was Mitigated after the Exposure to Treatments

Between all groups the number of ipsilateral turns were significantly different by one-way ANOVA [F (3,28)=11.7, p=0.00)]. Tukey HSD post hoc test revealed that the non-treated group had a higher number of rotations in contrast with the treatments categories. It was appreciable then, the decrease of this pattern of behavior in all treatment groups, 6-OHDA+exercise (3.63(1.59) p=0.00) 6-OHDA+Cells (4.88 (1.45) p=0.002) and 6-OHDA+combined (3.38 (2.20) p=0.00) during the performance of the Foot-fault task. There was not a significant difference among treatments groups regarding this variable (Fig.4b). No contralateral rotation was seen in any group.
3.5 Both Therapeutic Strategies improved Locomotor Performance.

A significant difference in the number of foot slips was found in the comparison among all experimental groups [F(4, 36)=22.3, p=0.00]). In the Tukey HSD post hoc test, the injured group had a significantly higher proportion of slips during the task than those allocated to sham or experimental treatments (p<0.001) (Fig. 5a). In the comparison of the treatments versus the sham group, just the 6-OHDA+cells group was statistically different (p=0.04) (Fig. 5a). We did not find significant difference between 6-OHDA+exercise and 6-OHDA+combined groups when compared among themselves (p=0.17) or with sham category (p=0.98, p=0.38, respectively (Table 2).

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>p-value</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Injury</td>
<td>10.88</td>
<td>4.91</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>6-OHDA+Exercise</td>
<td>3.63</td>
<td>1.59</td>
<td><0.001</td>
<td>8</td>
</tr>
<tr>
<td>6-OHDA+Cells</td>
<td>4.88</td>
<td>1.45</td>
<td>0.002</td>
<td>8</td>
</tr>
<tr>
<td>6-OHDA+Combined</td>
<td>3.38</td>
<td>2.20</td>
<td><0.001</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>5.69</td>
<td>4.14</td>
<td></td>
<td>41</td>
</tr>
</tbody>
</table>

Table 1 - Rotational Pattern in the Foot-fault Task. Total turns were compared among the groups; p-values row represent the Tukey comparison between the injured group and the sham or each of the therapy groups. p<0.05.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>p-value</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>31.66</td>
<td>6.4</td>
<td><0.001</td>
<td>9</td>
</tr>
<tr>
<td>Injury</td>
<td>76.13</td>
<td>15.3</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>6-OHDA+Exercise</td>
<td>28.5</td>
<td>8</td>
<td><0.001</td>
<td>8</td>
</tr>
<tr>
<td>6-OHDA+Cells</td>
<td>47.75</td>
<td>12.37</td>
<td><0.001</td>
<td>8</td>
</tr>
<tr>
<td>6-OHDA+Combined</td>
<td>41.63</td>
<td>13.1</td>
<td><0.001</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>44.78</td>
<td>20.25</td>
<td></td>
<td>41</td>
</tr>
</tbody>
</table>

Table 2 - Total Number of Foot-slips. Foot slips were compared among groups; p-values in each row represent the Tukey comparison between the non-treated group regard to all experimental categories. p<0.05.
3.6 Therapeutic Strategies Tested Demonstrated an Improved the Exploratory Behavior

Significant differences were found in the number of foot-slips among the forelimbs and hindlimbs in the univariate analysis of variances in all groups (p<0.001), being greater the faults-mistakes in the first ones, this result supports findings reported in other studies about the relevance of forelimbs in the exploring capacity of rats. Regarding this variable, only the 6-OHDA+ exercise and the combined groups obtained fewer errors. Despite the cerebral unilateral lesion, there were no differences in the number of foot faults between corporal hemispheres in none of the groups (p=0.06) (Fig.5b-c).

Fig.4. Rotational Behavior. (A) The graph indicates the mean of the number of rotational pattern among the groups in the Open-Field (before therapeutic intervention). There was no significant difference in the degree of severity among each other. The sham sample does not register rotations. (B) The number of rotations were decreased in all the therapeutic categories during the development of the Foot fault task (p<0.001) by 1-way analysis of variance, Tukey’s multiple comparisons test (after exposure to treatments).
Fig. 5. The motor performance was improved in all treatment groups. (A) Rodents submitted to therapeutic interventions exhibited a decrease in the number of faults slips in contrast with non-treated sample p<0.001. A statistical difference only was found among the comparison of 6-OHDA+cells group versus sham category p=0.045. No significant difference was found in the correlation between the others treatment categories p=0.17. Behavioral testing was analyzed using a one-way analysis of variance (ANOVA) followed by a Tukey HSD post hoc test post. Regard to Exploratory Behavior. (B) The animals in all samples exhibited significant differences in the forelimbs and hindlimbs foot-faults in the analysis of variance p<0.05. (C) Rodents did not show significant differences between slips among right and left paws foot slips p>0.05.
3.7 Staining Analysis demonstrated Dopaminergic Depletion in the Injured Side

In the present study, we observed a decrease in the levels of TH expression in the lesioned hemisphere in contrast with the healthy one in the injured groups by immunofluorescence analyses. It was visually identified a probable preservation of dopaminergic neurons in both SNc and the fibers that constitute and underlie substantia nigra pars reticulata in the treatment groups respect to rodents non-treat (Fig.6).
Fig. 6. Site-specific decrease in Tyrosine Hydroxylase staining. Immunofluorescence for tyrosine hydroxylase (red) in the substantia nigra compacta and substantia nigra reticularis. It is visually apparent the reduction on the injured sample in comparison to the others groups. Scale for smaller pictures = 200 μm.
4 Discussion

PD is a complex neurodegenerative disorder characterized by motor and cognitive symptoms, owing to the neuronal loss in the brain. Many elements, including aging, genetic susceptibility, lifestyle and environmental factors play a relevant role in the onset of this pathogenic process. Recent advances in research have contributed to understanding the mechanisms that are enrolled in the nigral dopaminergic cell death, framed by oxidative stress, mitochondrial dysfunction, genic mutations, and neuroinflammation process (Conte et al., 2013; Magrinelli et al., 2016). At present, only symptomatic treatments had been developed, being not enough to halt the disease progression. Thus, in the present study, we explore the retrieval degree in the motor function of PD model rats induced by 6-OHDA, using the combination of both therapeutic approaches.

In our work, we demonstrated through the morphologic and biophysical analyses the authenticity of our cells based on the high capacity to adherence, the ability of multipotent differentiation (into osteoblasts, adipocytes, and chondrocytes) (Fig. 2), and the positive expression of CD44, and CD105 markers (Fig.3). These parameters established by International Society of Cellular Therapy were used to confirm the accuracy of our cells as MSCs (Dominici et al., 2006; Pittenger et al., 1999).

Regarding the neurobehavioral data, the methylphenidate challenge demonstrated the presence of injury in all experimental categories, except the sham group. This outcome was confirmed by the visual inspection of the immunofluorescence staining of TH-positive neurons, where a less reactivity was detected in the lesioned side in contrast with the unaffected one (Fig.6). Similarly, after the exposure to the therapeutical approaches, we found a significant decrease in the number of ipsilateral rotations toward the injury-side in all treatment groups, especially, in the 6-OHDA+exercise and 6-OHDA+combined samples respect to the non-treat rats, where was evident the persistence of motor impairments, particularly, in paws placing and motor coordination (Fig.4). This outcome confirms the effectiveness of these therapeutic approaches, either in combination or used individually, for treating the imbalance of dopaminergic levels, resulting in a decrease in rotational pattern. Based on previous studies about the use of human mesenchymal stem
cells (hMSCs) for treatment neurodegenerative conditions, it has been recognized the potential benefits of this type of cells in owing to the self-renewal, multipotency capacity, and the high cellular differentiation ability (Han et al., 2017). The functional improvements recognized in our rodents might have been supported by the capacity of these cells to synthesize and secrete both, neurotrophic and growth factors such as: the brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), basic fibroblast growth factor (bFGF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF). These components are essential to preserve the rate of survival neurons, improve the microenvironmental conditions and exert a protective function (Park et al., 2015; Zarrinpour et al., 2017). Despite we did not analyze the levels of these factors, studies using the therapeutic strategies here worked have revealed that are crucial to induce motor recovery and functional independence in rodents.(Bardoni et al., 2007). In this sense, it has been also showed that aerobic exercise training leads to a better control of GABAergic interneurons, decreasing thus, the motor incoordination and the clear deficits in the synchronism between dopaminergic pathways (Borrione et al., 2014). Additionally, studies in rodents exposed to aerobic training programs have identified the presence of Insulin-like growth factor 1 (IGF-1) and the peroxisome proliferator activated receptor-gamma coactivator protein-1alpha (PGC-1α). This neurotrophin and transcription factor, apparently, have a relevant role in the preservation of the functionality and the protection of neurons being able to boost the benefits of the cellular graft, aiding with the synaptogenesis and neurogenesis processes (Fisher et al., 2008; Petzinger et al., 2015).

Certainly, one of the mechanisms that are implicated in the recovery of motor symptoms in PD is the restoration of the DA levels. In this case, the reinstatement of nigral dopaminergic neurons through cellular proliferation, the promotion of DA release from those remnant neurons and the stimulation of neural dopaminergic precursor cells are vital elements that ameliorate this locomotor symptomatic profile (Berg et al., 2015). In this context, it is possible that both therapeutic approaches caused positive regulation in DA levels and protective functions against dopaminergic depletion leading to an improvement in motor performance, however, deeper analyses should be performed to corroborate this assumption, due to was not possible tested it in our study.
In addition to the release of neurotrophins and the stimulation of the neuronal plasticity, the mitigation of aberrants corticostriatal glutamatergic and dopaminergic synapses have been reported from both therapeutic strategies, which can partially explain the observed improvement of motor and coordination deficits in our rats. (Ahmed et al., 2016; Pantcheva et al., 2015; Ye et al., 2007). These morphology-structural adaptations were already demonstrated by Wang et al. they concluded that long-term aerobic programs in Parkinsonian rats improve functional connectivity and reintegration between motor cortex with basal ganglia and cerebellum (Wang et al., 2015). Another effect from treadmill exercise was detected in Parkinsonian mice induced by 1,2,3,6-tetrahydropyridine (MPTP) where was showed an augment in D2 receptor and a decrease the rate of dendritic spine loss (Toy et al., 2014; Vučković et al., 2010). Taken together all these reports support our findings that exercise and cells transplantation are apparently two promising approaches in the treatment of motor function in PD. Nonetheless, in the present work, we identified a better motor performance and exploratory behavior in the rodents underwent exercise training when compared to cells transplantation per se. This overview confirms the superior and broad benefits of the exercise as a tool in the reinstatement of motor functionality in PD (Fig.5).

Another element that has associated with the decrease in motor deficits in patients and animal models of PD is the modulation of neuroinflammatory response through the reduction in the release of pro-inflammatory cytokines and the decrease of oxidative stress (Spielman et al., 2016; Zhang et al., 2013). Moreover, the strengthening of the neuronal microenvironment is a key effect that is related to an increase of the rate survival of injured neurons. In this context, both approaches have been implicated in the structural support to the extracellular matrix, the release of blood-derived factors, increased oxygen saturation and the contributions in the discard of neurotoxic elements in the brain, being fundamental to facilitate the intrinsic restorative processes (Dooves et al., 2016; Ploughman, 2008).

Despite our initial assumption to find a higher motor recovery in the 6-OHDA+combined group as compared to the other isolated treatment categories; our data from behavioral testing showed no significant difference respect this statement (Fig.5). This outcome
might be attributed to the powerful effects of exercise already mentioned. In this line of thought, we consider that the exercise outgrew the effects of the cellular therapy, achieving a better result in the locomotor patterns. The unsuccessful differentiation process into dopaminergic neurons or glial cells could be another explanation for the absence of better motor results in this particular group, in this case, is possible that the transplanted hMSCs might not have undergone a differentiation towards functional cells, decreasing thus the effectiveness of this treatment category. Although is probable that the cells grafted might differentiate in glial cells, it is from this point of view is important to highlight that even though glial cells have an essential role in the neuro-environmental control and differentiation process, its action on the production and restitution of DA is not enough, being persistent the presence of motor symptoms (Mena and García de Yébenes, 2008; Vila et al., 2001). This notion also could give an explanation about the absence of a better performance of the combined group during the development of the functional test here used. Additionally, we consider that quantity of cells that we grafted could be a determinant factor in the level of recovery in those groups that received certainly the cells. Some authors have been reported a linear relationship between the number of cells grafted and the degree of the improvement in the grade of functionality in animal models of PD (Haobam et al., n.d.). From this nexus is possible to infer that a major motor functionality level could have been obtained if more cellular resources would have been implanted.

Unfortunately, to our knowledge, there is no evidence that compares the efficacy of these therapeutic strategies in conjunction or separately. Being this the main gap in current knowledge for which this study was developed. From this experimental design, we failed to clarify the mechanisms by which our combined group was not superior on the motor performance respect to the other categories of treatment. Notwithstanding, we demonstrated that both therapeutic approaches have a positive effect on locomotor recovery and dopaminergic depletion.
5 Conclusion

The current study provided experimental evidence that supports the therapeutic benefit of ADMSCs and most especially the PE for the mitigation of motor deficiencies and the improvement in locomotor performance in an animal model of PD. These outcomes here represented are fundamental evidence in favor of their potential effectiveness as disease-modifying treatments that from of multiples neuro-plasticity mechanisms enhanced functionality in our rodents. Despite that are widely reported the activation of endogenous pathways that support the relieve of motor symptoms through the therapeutic strategies here worked, these are not well understood and elucidated what encourage the development of more studies in this area, allowing a better comprehension of the interrelation of exercise as an adjuvant in the cellular transplantation.

In the present work, we did not find better results in motor performance in our combined group in contrast with the isolated therapies. This result, against our initial assumption, could be associated with the dynamic and particular properties of each therapy by its own, a relationship that deserves to be more deeply studied, identifying thus possible mediating ceiling effects by these two therapeutic approaches.

Nonetheless, we consider of utmost importance the development of other studies that inquiry in a deeper way the neuronal adaptations induced by these treatment strategies. In the same way, it would be interesting to assess the potential of other modalities of exercise to heighten the neuroplastic and neuroprotective effects of therapies based on cellular transplantation in different neurodegenerative conditions as PD.

6. Acknowledgments

The authors want to express our deepest thanks to Prof. Pedro Dal Lago and Prof. Ramiro Nunes of Physiology Department, also to Prof. Alberto Antonio Rasia of the Morphology and Experimental Physiology Department for their kind cooperation in the technical assistance. As well, we are grateful with Dr. Lucas Tortorelli for the excellent assistance in the development of certain contributions in methodological aspects of the study. Fernanda Zin for her aid in the performing of the physical training in our rodents.
The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico provided research support through scholarships to Jenny P. Berrío, Cristiano Rodrigues and Mariana Zancan respectively.

7. Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

8. Conflicts of interest: No potential conflicts of interest.

9. Highlights

- The hydroxydopamine (6-OHDA) induce motor disturbances in exploratory behavior.
- The Foot-Fault Task is a sensible test to determine dopaminergic lesion in rodents models of PD.
- The combination of exercise and mesenchymal transplant did not generate synergic effects.
- The aerobic exercise and cellular transplantation improve locomotor performance.

10. References

Human adipose-Derived Mesenchymal Stem Cells Improve Motor Functions and are Neuroprotective in the 6-Hydroxydopamine-Rat Model for Parkinson’s Disease when Cultured in Monolayer Cultures but Suppress Hippocampal Neurogenesis and Hippocampal Memory Function when Cultured in Spheroids. Stem Cell Rev. Reports 11, 133–149. doi:10.1007/s12015-014-9551-y

CONCLUSION

The literature review and empirical study that were part of the present work support the approach about the promising and powerful effects of hMSCs transplantation and PE in the treatment of motor symptoms in the PD. Several studies cited in the present work, suggests a wide variety of mechanisms including the release of different neurotrophic factors, the stimulation of regenerative processes, the restitution of neurotransmitters, reinstalling of damaged brain areas and the constitution of pathways that aid to remove toxic components derived from the neuropathophysiological metabolism, ensuring the improvement in locomotor functionality. In this sense, these mechanisms of action boosted by the therapeutical strategies here used promotes the increases in DA levels, the boost of neurogenesis, the dopaminergic circuits repair, the modulation of neuroinflammatory processes and the constitution of appropriate conditions to increase not only the function but also the rate survival of remaining dopaminergic neurons. This engram of beneficial effects that take part in the recovery and neuroplasticity process could support the results that we obtained in our experimental study and could be associated with the decrease in the rotational behavior induced by the Foot-Fault Task, the enhancement of motor coordination and paws placing in our rats.

Despite that our initial conception was not proved and we did not find synergic results in the combined group in contrast with the isolated therapeutical approaches, the outcomes here registered are evidence that reinforces the effectiveness of SCs transplantation and, especially, the exercise as a favorable strategies that are essential to overcome the locomotor deficits and improve the motor coordination recovery in rodents with dopaminergic lesion.

The results here exposed give rise issues that unfortunately we could not respond in this study and our outcomes are opposite respect to other ones that have revealed superior benefits in the conjunction of the approaches here worked in other neurological conditions. Is for that reason that we strongly recommend more studies that emphasize in the understanding of the reciprocal interrelationship between cells transplantation and the use of exercise as an adjuvant method, determining not only the effects on the locomotor performance but also in the cognitive processing. In addition, is relevant a
better insight of the factors that could influence in the efficacy of the combination of these methods, including those own to the cell culture and graft procedures and those belonging to the modality and the parameters of the exercise. Allowing the development of better and effective therapeutic strategies that work against to the progressive and the functional motor decline in PD.
APPENDIXES

1. ETHICS AND RESEARCH COMMITTEE´S APPROVAL

CEUA –COMISSÃO DE ÉTICA NO USO DE ANIMAIS

PARECER CONSUBSTANTIADO DE PROJETO DE PESQUISA E ENSINO

1) PROTOCOLO Nº: 176/15

2) DATA DO PARECER: 11/12/15

3) TÍTULO DO PROJETO:

Transplantes neurais e exercício físico aeróbio: combinação terapêutica em um modelo animal de doença de Parkinson

4) PESQUISADOR RESPONSÁVEL:

Alcyr de Oliveira

5) RESUMO DO PROJETO:

Trata-se de um estudo que tem por objetivo avaliar os efeitos da terapia combinada de transplantes neurais de células tronco e exercício físico aeróbico sobre o comportamento motor, memória, neurogênese e a secreção de BDNF. Para tal, ratos Wistar adultos serão submetidos a um modelo de doença de Parkinson (DP) por meio da injeção unilateral de 6-OHDA e terão implantes de células tronco mesenquimais humanas acompanhado de um regime de exercício aeróbico. Os desfechos avaliados serão memória de reconhecimento (por meio do teste de reconhecimento de objetos), condicionamento aversivo contextual (por meio da esquiva passiva) e atividade motora (por meio do footfault test). Após a realização dos testes comportamentais, os animais serão eutanasiados e os cortes de encéfalo serão submetidos à análise imunoistológica para verificar o estado da lesão, proliferação de células implantadas e expressão de BDNF.
6) **OBJETIVOS DO PROJETO:**

Investigar os efeitos da adição de exercício físico aeróbico ao tratamento com transplantes de células-tronco mesenquimais humanas derivadas do tecido adiposo sobre a memória e performance motora no modelo animal de DP

7) **FINALIDADE DO PROJETO:**

<table>
<thead>
<tr>
<th>Título</th>
<th>Adequado</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introdução</td>
<td>Adequada</td>
<td>Comentários</td>
</tr>
<tr>
<td>Objetivos</td>
<td>Adequados</td>
<td>Comentários</td>
</tr>
<tr>
<td>Relevância e Justificativa</td>
<td>Adequados</td>
<td>Comentários</td>
</tr>
<tr>
<td>Materiais e Métodos</td>
<td>Adequados</td>
<td>Comentários</td>
</tr>
<tr>
<td>Cronograma para execução da pesquisa</td>
<td>Adequado</td>
<td>Comentários</td>
</tr>
<tr>
<td>Orçamento e fonte financiadora</td>
<td>Adequados</td>
<td>Comentários</td>
</tr>
<tr>
<td>Referências Bibliográficas</td>
<td>Adequadas</td>
<td>Comentários</td>
</tr>
</tbody>
</table>

8) **ITENS METODOLÓGICOS E ÉTICOS DO PROJETO:**

9) **O PROJETO ESTÁ ADEQUADO À LEGISLAÇÃO VIGENTE:**

<table>
<thead>
<tr>
<th>Sim</th>
<th>Não</th>
</tr>
</thead>
</table>
10) INFORMAÇÕES RELATIVAS AOS ANIMAIS:

Grau de dor/estresse: B C D X E

Justifique: Procedimentos que podem causar dor ou estresse exigindo o emprego de anestésicos, analgésicos ou ansiolíticos.

Espécie: Ratos Wistar machos **Número Amostral:** 66

Redução Amostral:

- [] Sim
- [x] Não

Justifique:

Substituição de Metodologia:

- [] Sim
- [x] Não

Se achar necessário, justifique e sugira uma nova metodologia:

Aprimoramento da Metodologia:

- [] Sim
- [x] Não

Se achar necessário, justifique e sugira aprimoramentos da metodologia:

Acomodação e manutenção dos animais:

- [x] Adequada
- [] Inadequada

Se achar inadequada cite abaixo as melhorias necessárias:

Manipulação dos animais:

- [x] Adequada
- [] Inadequada

Se achar inadequada cite abaixo as melhorias necessárias:

Analgesia dos animais (se aplicável):

- [x] Adequada
- [] Inadequada

Se achar inadequada cite abaixo as melhorias necessárias com analgésico substituto:

Anestesia dos animais (se aplicável):

- [x] Adequada
- [] Inadequada

Se achar inadequada cite abaixo as melhorias necessárias com anestésico substituto:
Eutanásia dos animais (se aplicável):

〣 Adequada □ Inadequada

Se achar inadequada cite abaixo as melhorias necessárias com metodologia substituta:

Local de Realização (Biotério/Labotarório): Laboratório de Fisiologia e Laboratório de Fisiologia Comportamental e Metabólica

Outra instituição: Qual?

11) CRONOGRAMA DE UTILIZAÇÃO DE ANIMAIS

<table>
<thead>
<tr>
<th>Data</th>
<th>Espécie</th>
<th>Sexo</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ratos</td>
<td>Macho</td>
<td>66</td>
</tr>
</tbody>
</table>

12) RECOMENDAÇÃO:

〣 Aprovado

□ Com Pendência

□ Não aprovado

Data de início: 02/16 Data de Término: 05/17

Comentários gerais sobre o projeto:

Projeto bem escrito, em tema relevante, bem justificado quanto a necessidade de uso de animais.
2. AUTHOR INSTRUCTIONS FOR THE ORIGINAL ARTICLE BRAIN RESEARCH BULLETIN-
GUIDE FOR AUTHORS

Your Paper Your Way

We now differentiate between the requirements for new and revised submissions. You may choose to submit your manuscript as a single Word or PDF file to be used in the refereeing process. Only when your paper is at the revision stage, will you be requested to put your paper in to a ‘correct format’ for acceptance and provide the items required for the publication of your article.

Publishing with Brain Research Bulletin

Brain Research Bulletin offers simple electronic submission, accelerated peer-review and rapid publication. Section Editors are committed to work closely with authors to provide constructive assistance to enhance visibility and impact of published articles. Brain Research Bulletin encourages authors to use high resolution color in figures to enhance the clarity and impact of their publications. The vast majority of our readership access the journal online and there is no charge for color figures in the online version (html/PDF) of your article.

Types of paper

Brain Research Bulletin is dedicated to the rapid publication of significant research articles and reviews in all areas of the neurosciences. In addition to reports of original research, the journal also publishes short actualized reviews on emerging areas of neuroscience, methodological developments, and occasional Special Issues organized by Guest Editors. Published manuscripts should inform about mechanisms and processes of nervous system organization and function. Only in exceptional circumstances does the journal publish reports entirely related to human or animal performance or behavior. The editors are committed to maintaining a high quality of all published reports and to a rapid and fair review process. Accelerated publication is the goal for all manuscripts. All articles will be published in English.

Contact details for submission

Once you are ready to submit, go to http://ees.elsevier.com/brb

Select the "Submit paper” option

Follow prompts online. Please note that at each stage of the submission process it is possible to go back a step, save the submission to continue later, or remove/change any information already entered.

The submission system will generate a PDF file to be used for the reviewing process. You will receive confirmation of your submission, and further progress of your paper at every stage of its review period thereafter, via email. To facilitate efficient and effective peer review of manuscripts, all manuscripts are now to be submitted electronically. In cases of difficulty operating the electronic process, please contact the Journal Manager, brb@elsevier.com for help and advice.
Submission checklist

You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present

One author has been designated as the corresponding author with contact details:

E-mail address

Full postal address

All necessary files have been uploaded:

Manuscript:

Include keywords

All figures (include relevant captions)

All tables (including titles, description, footnotes)

Ensure all figure and table citations in the text match the files provided

Indicate clearly if color should be used for any figures in print Graphical Abstracts /Highlights files (where applicable) Supplemental files (where applicable).

Further considerations

Manuscript has been 'spell checked' and 'grammar checked'

All references mentioned in the Reference List are cited in the text, and vice versa

Permission has been obtained for use of copyrighted material from other sources (including the Internet)

Relevant declarations of interest have been made

Journal policies detailed in this guide have been reviewed

Referee suggestions and contact details provided, based on journal requirements.

Human and animal rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated
guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed.

Declaration of interest

All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. If there are no conflicts of interest then please state this: ‘Conflicts of interest: none’. More information.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see ‘Multiple, redundant or concurrent publication’ section of our ethics policy for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck.

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Copyright

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and
translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For open access articles: Upon acceptance of an article, authors will be asked to complete an ‘Exclusive License Agreement’ (more information). Permitted third party reuse of open access articles is determined by the author's choice of user license.

Author rights. As an author you (or your employer or institution) have certain rights to reuse your work.

Elsevier supports responsible sharing. Find out how you can share your research published in Elsevier journals.

Role of the funding source. You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design in the collection, analysis and interpretation of data in the writing of the report and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies. Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder's open access policies. Some funding bodies will reimburse the author for the Open Access Publication Fee. Details of existing agreements are available online.

Open access. This journal offers authors a choice in publishing their research:

Open access

Articles are freely available to both subscribers and the wider public with permitted reuse.

An open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

Subscription

Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs.

No open access publication fee payable by authors.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards. For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:

Creative Commons Attribution (CC BY). Lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honor or reputation.
Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND). For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article. The open access publication fee for this journal is **USD 2200**, excluding taxes. Learn more about Elsevier's pricing policy: http://www.elsevier.com/openaccesspricing.

Green open access

Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information. Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. **Embargo period:** For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form.

This journal has an embargo period of 12 months.

Elsevier Publishing Campus

The Elsevier Publishing Campus (www.publishingcampus.com) is an online platform offering free lectures, interactive training and professional advice to support you in publishing your research. The College of Skills training offers modules on how to prepare, write and structure your article and explains how editors will look at your paper when it is submitted for publication. Use these resources, and more, to ensure that your submission will be the best that you can make it.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the [English Language Editing service](http://www.elsevier.com/language-editing-service) available from Elsevier's WebShop.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Referees

Please submit the names and institutional e-mail addresses of several potential referees. For more details, visit our [Support site](http://www.elsevier.com/support). Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.
NEW SUBMISSIONS

Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts your files to a single PDF file, which is used in the peer-review process.

As part of the Your Paper Your Way service, you may choose to submit your manuscript as a single file to be used in the refereeing process. This can be a PDF file or a Word document, in any format or lay-out that can be used by referees to evaluate your manuscript. It should contain high enough quality figures for refereeing. If you prefer to do so, you may still provide all or some of the source files at the initial submission. Please note that individual figure files larger than 10 MB must be uploaded separately.

References

There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct.

Formatting requirements

There are no strict formatting requirements but all manuscripts must contain the essential elements needed to convey your manuscript, for example Abstract, Keywords, Introduction, Materials and Methods, Results, Conclusions, Artwork and Tables with Captions.

If your article includes any Videos and/or other Supplementary material, this should be included in your initial submission for peer review purposes.

Divide the article into clearly defined sections.

Figures and tables embedded in text. Please ensure the figures and the tables included in the single file are placed next to the relevant text in the manuscript, rather than at the bottom or the top of the file. The corresponding caption should be placed directly below the figure or table.

Peer review. This journal operates a single blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then typically sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor's decision is final. More information on types of peer review.

REVISED SUBMISSIONS

Use of word processing software

Regardless of the file format of the original submission, at revision you must provide us with an editable file of the entire article. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). See also the section on Electronic artwork. To avoid
unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Article structure

Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction. State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods. Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Experimental. Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Theory/calculation. A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results. Results should be clear and concise.

Discussion. This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions. The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices. If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc. in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1 Fig. A.1, etc.

Essential title page information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

- **Author names and affiliations.** Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
• **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. **Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.**

• **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a ‘Present address’ (or ‘Permanent address’) may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Abstract

A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Graphical abstract

Although a graphical abstract is optional, its use is encouraged as it draws more attention to the online article. The graphical abstract should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. Authors can make use of Elsevier’s Illustration Services to ensure the best presentation of their images and in accordance with all technical requirements.

Highlights

Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate editable file in the online submission system. Please use ‘Highlights’ in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). You can view example Highlights on our information site.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, ‘and’, ‘of’). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.
Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources. List funding sources in this standard way to facilitate compliance to funder’s requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy] the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz] and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Math formulae. Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., \(\frac{X}{Y} \). In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by \(\exp \). Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article.

Artwork

Electronic artwork
Make sure you use uniform lettering and sizing of your original artwork.

Preferred fonts: Arial (or Helvetica), Times New Roman (or Times), Symbol, Courier.

Number the illustrations according to their sequence in the text.

Use a logical naming convention for your artwork files.

Indicate per figure if it is a single, 1.5 or 2-column fitting image.

For Word submissions only, you may still provide figures and their captions, and tables within a single file at the revision stage

Please note that individual figure files larger than 10 MB must be provided in separate source files.
Formats
Regardless of the application used, when your electronic artwork is finalized, please 'save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings. Embed the font or save the text as 'graphics'.TIFF (or JPG): Color or grayscale photographs (halftones): always use a minimum of 300 dpi. TIFF (or JPG): Bitmapped line drawings: use a minimum of 1000 dpi. TIFF (or JPG): Combinations bitmapped line/halftone (color or grayscale): a minimum of 500 dpi is required.

Please do not:
Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG) the resolution is too low.
Supply files that are too low in resolution.
Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. Further information on the preparation of electronic artwork.

Illustration services. Elsevier's WebShop offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier’s expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image 'polishing' is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Figure captions. Ensure that each illustration has a caption. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables. Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References

Citation in text
For citation of articles in the text of the manuscript, papers with more than two authors should use the last name of the first author, followed by et al., a comma, and followed by a space and the year of publication (example: Chen et al., 2006). In the event the cited manuscript has two authors, the in text citation should include both last names, a comma, and followed by a space and the publication year (example: Brown and Johnston, 2000).

Web references

As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Data references This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

References in a special issue. Please ensure that the words ‘this issue’ are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software. Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal's style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link: http://open.mendeley.com/use-citation-style/brain-research-bulletin

When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference formatting

There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:
Reference style

References should include only articles that are published or in press. For references to in press articles, please confirm with the cited journal that the article is in fact accepted and in press and include a DOI number and as much other information as possible at the time of final submission. Unpublished data, submitted manuscripts, abstracts, and personal communications should be cited within the text only. Personal communication should be documented by a letter of permission. Submitted articles should be cited as unpublished data, data not shown, or personal communication.

Note: "et al." should only be used after ten authors. Please use the following style for references:

Journal abbreviations source. Journal names should be abbreviated according to the [List of Title Word Abbreviations](#).

Video

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file’s content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including [ScienceDirect](#). Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary material

Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please
make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the ‘Track Changes’ option in Microsoft Office files as these will appear in the published version.

RESEARCH DATA

This journal encourages and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings. To facilitate reproducibility and data reuse, this journal also encourages you to share your software, code, models, algorithms, protocols, methods and other useful materials related to the project.

Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. If you are sharing data in one of these ways, you are encouraged to cite the data in your manuscript and reference list. Please refer to the "References" section for more information about data citation. For more information on depositing, sharing and using research data and other relevant research materials, visit the research data page.

Data linking. If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that give them a better understanding of the research described. There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page. For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.

In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020 CCDC: 734053 PDB: 1XFN).

Mendeley data. This journal supports Mendeley Data, enabling you to deposit any research data (including raw and processed data, video, code, software, algorithms, protocols, and methods) associated with your manuscript in a free-to-use, open access repository. During the submission process, after uploading your manuscript, you will have the opportunity to upload your relevant datasets directly to Mendeley Data. The datasets will be listed and directly accessible to readers next to your published article online.

Transparency. To foster transparency, we encourage you to state the availability of your data in your submission. If your data is unavailable to access or unsuitable to post, this gives you the opportunity to indicate why. If you submit this form with your manuscript as a supplementary file, the statement will appear next to your published article on ScienceDirect.

ARTICLE ENRICHMENTS

AudioSlides. The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information
and examples are available. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Interactive plots. This journal enables you to show an Interactive Plot with your article by simply submitting a data file.

Online proof correction. Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors. If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints

The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s Webshop. Corresponding authors who have published their article open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.
3. RELATED ARTICLES

FIRST REVIEW ARTICLE:
Review article already published in the Journal of Stem Cell Research & Therapeutics
Received: October 25-2015 / Published: March 24, 2016.

SECOND REVIEW ARTICLE:
Review article already accepted in the Journal of Psychology and Neurosciences